File size: 2,109 Bytes
c792e6a
7cb238c
 
 
 
c792e6a
 
7cb238c
 
 
 
f1b27a1
7cb238c
 
 
 
e919c8a
 
 
 
 
 
 
 
 
 
 
7cb238c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e919c8a
 
 
 
 
 
 
 
 
7cb238c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
language: 
- tr
tags:
- roberta
license: cc-by-nc-sa-4.0
---

# RoBERTweetTurkCovid (uncased)

Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. 
The pretrained corpus is a Turkish tweets collection related to COVID-19. 

Model architecture is similar to RoBERTa-base (12 layers, 12 heads, and 768 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 30k. 

The details of pretraining can be found at this paper: 
```bibtex
@InProceedings{clef-checkthat:2022:task1:oguzhan,
author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin},
title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection",
year = {2022},
booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum",
editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin},
series = {CLEF~'2022},
address = {Bologna, Italy},
}
```

The following code can be used for model loading and tokenization, example max length (768) can be changed:
```
	model = AutoModel.from_pretrained([model_path])
	#for sequence classification:
	#model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])

	tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
	tokenizer.mask_token = "[MASK]"
	tokenizer.cls_token = "[CLS]"
	tokenizer.sep_token = "[SEP]"
	tokenizer.pad_token = "[PAD]"
	tokenizer.unk_token = "[UNK]"
	tokenizer.bos_token = "[CLS]"
	tokenizer.eos_token = "[SEP]"
	tokenizer.model_max_length = 768
```

### BibTeX entry and citation info
```bibtex
@InProceedings{clef-checkthat:2022:task1:oguzhan,
author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin},
title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection",
year = {2022},
booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum",
editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin},
series = {CLEF~'2022},
address = {Bologna, Italy},
}
```