# Introduction This repo contains pre-trained model using . It is trained on full LibriSpeech dataset. Also, it uses the `L` subset from [GigaSpeech](https://github.com/SpeechColab/GigaSpeech) as extra training data. ## How to clone this repo ``` sudo apt-get install git-lfs git clone https://huggingface.co./csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01 cd icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01 git lfs pull ``` **Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later. The model in this repo is trained using the commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`. You can use ``` git clone https://github.com/k2-fsa/icefall cd icefall git checkout 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc ``` to download `icefall`. You can find the model information by visiting In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2. The decoder architecture is modified from [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419). A Conv1d layer is placed right after the input embedding layer. ----- ## Description This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d. The commands for training are: ``` cd egs/librispeech/ASR/ ./prepare.sh ./prepare_giga_speech.sh export CUDA_VISIBLE_DEVICES="0,1,2,3" ./transducer_stateless_multi_datasets/train.py \ --world-size 4 \ --num-epochs 40 \ --start-epoch 0 \ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \ --full-libri 1 \ --max-duration 300 \ --lr-factor 5 \ --bpe-model data/lang_bpe_500/bpe.model \ --modified-transducer-prob 0.25 \ --giga-prob 0.2 ``` The tensorboard training log can be found at The command for decoding is: ```bash epoch=39 avg=15 sym=1 # greedy search ./transducer_stateless_multi_datasets/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --context-size 2 \ --max-sym-per-frame $sym # modified beam search ./transducer_stateless_multi_datasets/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --context-size 2 \ --decoding-method modified_beam_search \ --beam-size 4 ``` You can find the decoding log for the above command in this repo (in the folder `log`). The WERs for the test datasets are | | test-clean | test-other | comment | |-------------------------------------|------------|------------|------------------------------------------| | greedy search (max sym per frame 1) | 2.64 | 6.55 | --epoch 39, --avg 15, --max-duration 100 | | modified beam search (beam size 4) | 2.61 | 6.46 | --epoch 39, --avg 15, --max-duration 100 | # File description - [log][log], this directory contains the decoding log and decoding results - [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model - [data][data], this directory contains files generated by [prepare.sh][prepare] - [exp][exp], this directory contains only one file: `preprained.pt` `exp/pretrained.pt` is generated by the following command: ```bash ./transducer_stateless_multi_datasets/export.py \ --epoch 39 \ --avg 15 \ --bpe-model data/lang_bpe_500/bpe.model \ --exp-dir transducer_stateless_multi_datasets/exp-full-2 ``` **HINT**: To use `pretrained.pt` to compute the WER for test-clean and test-other, just do the following: ``` cp icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \ /path/to/icefall/egs/librispeech/ASR/transducer_stateless_multi_datasets/exp/epoch-999.pt ``` and pass `--epoch 999 --avg 1` to `transducer_stateless_multi_datasets/decode.py`. [icefall]: https://github.com/k2-fsa/icefall [prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh [exp]: https://huggingface.co./csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/exp [data]: https://huggingface.co./csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/data [test_wavs]: https://huggingface.co./csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/test_wavs [log]: https://huggingface.co./csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/log [icefall]: https://github.com/k2-fsa/icefall