csukuangfj
commited on
Commit
•
be5bd12
1
Parent(s):
c7c0e58
update readme.
Browse files
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Introduction
|
2 |
+
|
3 |
+
This repo contains pre-trained model using
|
4 |
+
<https://github.com/k2-fsa/icefall/pull/213>.
|
5 |
+
|
6 |
+
It is trained on full LibriSpeech dataset.
|
7 |
+
Also, it uses the `L` subset from [GigaSpeech](https://github.com/SpeechColab/GigaSpeech)
|
8 |
+
as extra training data.
|
9 |
+
|
10 |
+
## How to clone this repo
|
11 |
+
```
|
12 |
+
sudo apt-get install git-lfs
|
13 |
+
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01
|
14 |
+
|
15 |
+
|
16 |
+
cd icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01
|
17 |
+
git lfs pull
|
18 |
+
```
|
19 |
+
|
20 |
+
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.
|
21 |
+
|
22 |
+
The model in this repo is trained using the commit `TODO`.
|
23 |
+
|
24 |
+
You can use
|
25 |
+
|
26 |
+
```
|
27 |
+
git clone https://github.com/k2-fsa/icefall
|
28 |
+
cd icefall
|
29 |
+
git checkout TODO
|
30 |
+
```
|
31 |
+
to download `icefall`.
|
32 |
+
|
33 |
+
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/TODO/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py#L198>.
|
34 |
+
|
35 |
+
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
|
36 |
+
the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2.
|
37 |
+
|
38 |
+
The decoder architecture is modified from
|
39 |
+
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
|
40 |
+
A Conv1d layer is placed right after the input embedding layer.
|
41 |
+
|
42 |
+
-----
|
43 |
+
|
44 |
+
## Description
|
45 |
+
|
46 |
+
This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset
|
47 |
+
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
|
48 |
+
and contains only an embedding layer and a Conv1d.
|
49 |
+
|
50 |
+
The commands for training are:
|
51 |
+
|
52 |
+
```
|
53 |
+
cd egs/librispeech/ASR/
|
54 |
+
./prepare.sh
|
55 |
+
./prepare_giga_speech.sh
|
56 |
+
|
57 |
+
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
58 |
+
|
59 |
+
./transducer_stateless_multi_datasets/train.py \
|
60 |
+
--world-size 4 \
|
61 |
+
--num-epochs 40 \
|
62 |
+
--start-epoch 0 \
|
63 |
+
--exp-dir transducer_stateless_multi_datasets/exp-full-2 \
|
64 |
+
--full-libri 1 \
|
65 |
+
--max-duration 300 \
|
66 |
+
--lr-factor 5 \
|
67 |
+
--bpe-model data/lang_bpe_500/bpe.model \
|
68 |
+
--modified-transducer-prob 0.25 \
|
69 |
+
--giga-prob 0.2
|
70 |
+
```
|
71 |
+
|
72 |
+
The tensorboard training log can be found at
|
73 |
+
<https://tensorboard.dev/experiment/xmo5oCgrRVelH9dCeOkYBg/>
|
74 |
+
|
75 |
+
The command for decoding is:
|
76 |
+
|
77 |
+
```bash
|
78 |
+
epoch=39
|
79 |
+
avg=15
|
80 |
+
sym=1
|
81 |
+
|
82 |
+
# greedy search
|
83 |
+
./transducer_stateless_multi_datasets/decode.py \
|
84 |
+
--epoch $epoch \
|
85 |
+
--avg $avg \
|
86 |
+
--exp-dir transducer_stateless_multi_datasets/exp-full-2 \
|
87 |
+
--bpe-model ./data/lang_bpe_500/bpe.model \
|
88 |
+
--max-duration 100 \
|
89 |
+
--context-size 2 \
|
90 |
+
--max-sym-per-frame $sym
|
91 |
+
|
92 |
+
# modified beam search
|
93 |
+
./transducer_stateless_multi_datasets/decode.py \
|
94 |
+
--epoch $epoch \
|
95 |
+
--avg $avg \
|
96 |
+
--exp-dir transducer_stateless_multi_datasets/exp-full-2 \
|
97 |
+
--bpe-model ./data/lang_bpe_500/bpe.model \
|
98 |
+
--max-duration 100 \
|
99 |
+
--context-size 2 \
|
100 |
+
--decoding-method modified_beam_search \
|
101 |
+
--beam-size 4
|
102 |
+
```
|
103 |
+
|
104 |
+
You can find the decoding log for the above command in this
|
105 |
+
repo (in the folder `log`).
|
106 |
+
|
107 |
+
The WERs for the test datasets are
|
108 |
+
|
109 |
+
| | test-clean | test-other | comment |
|
110 |
+
|-------------------------------------|------------|------------|------------------------------------------|
|
111 |
+
| greedy search (max sym per frame 1) | 2.64 | 6.55 | --epoch 39, --avg 15, --max-duration 100 |
|
112 |
+
| modified beam search (beam size 4) | 2.61 | 6.46 | --epoch 39, --avg 15, --max-duration 100 |
|
113 |
+
|
114 |
+
|
115 |
+
# File description
|
116 |
+
|
117 |
+
- [log][log], this directory contains the decoding log and decoding results
|
118 |
+
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
|
119 |
+
- [data][data], this directory contains files generated by [prepare.sh][prepare]
|
120 |
+
- [exp][exp], this directory contains only one file: `preprained.pt`
|
121 |
+
|
122 |
+
`exp/pretrained.pt` is generated by the following command:
|
123 |
+
|
124 |
+
```bash
|
125 |
+
./transducer_stateless_multi_datasets/export.py \
|
126 |
+
--epoch 39 \
|
127 |
+
--avg 15 \
|
128 |
+
--bpe-model data/lang_bpe_500/bpe.model \
|
129 |
+
--exp-dir transducer_stateless_multi_datasets/exp-full-2
|
130 |
+
```
|
131 |
+
|
132 |
+
**HINT**: To use `pretrained.pt` to compute the WER for test-clean and test-other,
|
133 |
+
just do the following:
|
134 |
+
```
|
135 |
+
cp icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \
|
136 |
+
/path/to/icefall/egs/librispeech/ASR/transducer_stateless_multi_datasets/exp/epoch-999.pt
|
137 |
+
```
|
138 |
+
and pass `--epoch 999 --avg 1` to `transducer_stateless_multi_datasets/decode.py`.
|
139 |
+
|
140 |
+
|
141 |
+
[icefall]: https://github.com/k2-fsa/icefall
|
142 |
+
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh
|
143 |
+
[exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/exp
|
144 |
+
[data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/data
|
145 |
+
[test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/test_wavs
|
146 |
+
[log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/tree/main/log
|
147 |
+
[icefall]: https://github.com/k2-fsa/icefall
|