--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - swagen metrics: - wer model-index: - name: whisper-medium-swagen-combined-25hrs-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: swagen type: swagen metrics: - name: Wer type: wer value: 0.25892857142857145 --- # whisper-medium-swagen-combined-25hrs-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the swagen dataset. It achieves the following results on the evaluation set: - Loss: 0.3662 - Wer: 0.2589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.8233 | 0.0993 | 200 | 0.8047 | 0.4897 | | 1.9329 | 0.1986 | 400 | 0.6191 | 0.4011 | | 1.6927 | 0.2980 | 600 | 0.5421 | 0.3791 | | 1.6183 | 0.3973 | 800 | 0.4889 | 0.3210 | | 1.4431 | 0.4966 | 1000 | 0.4684 | 0.2866 | | 1.4117 | 0.5959 | 1200 | 0.4258 | 0.2650 | | 1.2699 | 0.6952 | 1400 | 0.4222 | 0.2665 | | 1.0532 | 0.7945 | 1600 | 0.4108 | 0.2513 | | 1.0589 | 0.8939 | 1800 | 0.3982 | 0.2291 | | 1.1856 | 0.9932 | 2000 | 0.3853 | 0.2355 | | 0.6692 | 1.0929 | 2200 | 0.4001 | 0.2650 | | 0.6505 | 1.1922 | 2400 | 0.3919 | 0.2389 | | 0.6613 | 1.2915 | 2600 | 0.3809 | 0.2385 | | 0.6194 | 1.3908 | 2800 | 0.3873 | 0.2343 | | 0.6358 | 1.4901 | 3000 | 0.3850 | 0.2142 | | 0.6208 | 1.5894 | 3200 | 0.3779 | 0.2388 | | 0.5932 | 1.6888 | 3400 | 0.3725 | 0.2040 | | 0.5797 | 1.7881 | 3600 | 0.3712 | 0.2092 | | 0.5707 | 1.8874 | 3800 | 0.3738 | 0.2342 | | 0.5928 | 1.9867 | 4000 | 0.3662 | 0.2589 | | 0.2626 | 2.0864 | 4200 | 0.3803 | 0.2697 | | 0.2557 | 2.1857 | 4400 | 0.3853 | 0.2102 | | 0.3342 | 2.2850 | 4600 | 0.3891 | 0.2062 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0