--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bigcgen metrics: - wer model-index: - name: whisper-medium-bigcgen-male-5hrs-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bigcgen type: bigcgen metrics: - name: Wer type: wer value: 0.5054099543159414 --- # whisper-medium-bigcgen-male-5hrs-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the bigcgen dataset. It achieves the following results on the evaluation set: - Loss: 0.6817 - Wer: 0.5054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.75e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.6678 | 0.6211 | 200 | 0.8233 | 0.6018 | | 2.3045 | 1.2422 | 400 | 0.7233 | 0.6420 | | 2.7509 | 1.8634 | 600 | 0.6881 | 0.5239 | | 1.7043 | 2.4845 | 800 | 0.6817 | 0.5054 | | 0.8068 | 3.1056 | 1000 | 0.7271 | 0.4915 | | 0.9957 | 3.7267 | 1200 | 0.7331 | 0.4893 | | 0.3976 | 4.3478 | 1400 | 0.7714 | 0.4943 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0