--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bemgen metrics: - wer model-index: - name: whisper-medium-bemgen-male-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bemgen type: bemgen metrics: - name: Wer type: wer value: 0.4208404074702886 --- # whisper-medium-bemgen-male-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the bemgen dataset. It achieves the following results on the evaluation set: - Loss: 0.5523 - Wer: 0.4208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.935 | 0.3960 | 200 | 0.9819 | 0.7042 | | 1.5573 | 0.7921 | 400 | 0.7304 | 0.5454 | | 1.0381 | 1.1881 | 600 | 0.6502 | 0.5091 | | 0.9454 | 1.5842 | 800 | 0.5922 | 0.4584 | | 0.8737 | 1.9802 | 1000 | 0.5523 | 0.4208 | | 0.4803 | 2.3762 | 1200 | 0.5768 | 0.4037 | | 0.4081 | 2.7723 | 1400 | 0.5654 | 0.4026 | | 0.1932 | 3.1683 | 1600 | 0.5846 | 0.3852 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0