--- base_model: openai/whisper-large-v3 library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-large-v3-genbed-m-model results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: genbed type: genbed config: en split: test metrics: - type: wer value: 37.19 name: WER --- # whisper-large-v3-genbed-m-model This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7479 - Wer: 36.9425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.75e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.4385 | 0.6596 | 250 | 0.7026 | 57.3435 | | 0.578 | 1.3193 | 500 | 0.6312 | 47.4271 | | 0.499 | 1.9789 | 750 | 0.5735 | 43.2676 | | 0.2829 | 2.6385 | 1000 | 0.5949 | 41.0913 | | 0.2304 | 3.2982 | 1250 | 0.6149 | 40.5660 | | 0.1672 | 3.9578 | 1500 | 0.5645 | 38.5399 | | 0.1019 | 4.6174 | 1750 | 0.6265 | 42.0026 | | 0.0911 | 5.2770 | 2000 | 0.6534 | 38.5399 | | 0.0713 | 5.9367 | 2250 | 0.6533 | 38.1754 | | 0.0545 | 6.5963 | 2500 | 0.6577 | 37.7466 | | 0.0497 | 7.2559 | 2750 | 0.6626 | 39.3117 | | 0.0425 | 7.9156 | 3000 | 0.6901 | 37.2642 | | 0.0374 | 8.5752 | 3250 | 0.6919 | 38.6256 | | 0.0312 | 9.2348 | 3500 | 0.7093 | 37.2856 | | 0.0302 | 9.8945 | 3750 | 0.7260 | 35.7740 | | 0.0233 | 10.5541 | 4000 | 0.7181 | 36.5780 | | 0.0262 | 11.2137 | 4250 | 0.7352 | 35.5703 | | 0.0241 | 11.8734 | 4500 | 0.7340 | 36.4172 | | 0.0198 | 12.5330 | 4750 | 0.7463 | 36.8461 | | 0.0201 | 13.1926 | 5000 | 0.7479 | 36.9425 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1