--- base_model: openai/whisper-large-v3 library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-large-v3-genbed-f-model results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: genbed type: genbed config: en split: test metrics: - type: wer value: 48.07 name: WER --- # whisper-large-v3-genbed-f-model This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5346 - Wer: 33.8051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.75e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.0784 | 0.6605 | 250 | 0.5140 | 48.6274 | | 0.4405 | 1.3210 | 500 | 0.4665 | 40.7746 | | 0.3641 | 1.9815 | 750 | 0.4253 | 37.1462 | | 0.215 | 2.6420 | 1000 | 0.4413 | 35.1990 | | 0.1871 | 3.3025 | 1250 | 0.4725 | 37.4548 | | 0.1425 | 3.9630 | 1500 | 0.4407 | 34.2520 | | 0.0918 | 4.6235 | 1750 | 0.4618 | 33.9860 | | 0.0821 | 5.2840 | 2000 | 0.4980 | 33.8689 | | 0.0665 | 5.9445 | 2250 | 0.5042 | 32.3367 | | 0.048 | 6.6050 | 2500 | 0.4927 | 33.9860 | | 0.0441 | 7.2655 | 2750 | 0.5449 | 32.0919 | | 0.0387 | 7.9260 | 3000 | 0.5235 | 31.6876 | | 0.0307 | 8.5865 | 3250 | 0.5227 | 31.7408 | | 0.0282 | 9.2470 | 3500 | 0.5682 | 32.3792 | | 0.0288 | 9.9075 | 3750 | 0.5346 | 33.8051 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1