--- base_model: openai/whisper-large-v3 datasets: - BembaSpeech license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-large-v3-bem-fsv results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: BembaSpeech bem type: BembaSpeech args: bem metrics: - type: wer value: 0.4033761652809272 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: BembaSpeech type: BembaSpeech config: en split: test metrics: - type: wer value: 47.3 name: WER --- # whisper-large-v3-bem-fsv This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the BembaSpeech bem dataset. It achieves the following results on the evaluation set: - Loss: 0.4783 - Wer: 0.4034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.75e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1