--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - natbed - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-bem-natbed-combined-model results: [] --- # w2v-bert-bem-natbed-combined-model This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co./facebook/w2v-bert-2.0) on the NATBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.6289 - Wer: 0.6078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.0078 | 0.5006 | 200 | 0.9815 | 0.8201 | | 0.8769 | 1.0013 | 400 | 0.9823 | 1.0433 | | 0.805 | 1.5019 | 600 | 0.8306 | 0.8606 | | 0.8141 | 2.0025 | 800 | 0.7548 | 0.7196 | | 0.7132 | 2.5031 | 1000 | 0.7485 | 0.6932 | | 0.7058 | 3.0038 | 1200 | 0.7280 | 0.6917 | | 0.6563 | 3.5044 | 1400 | 0.7046 | 0.7045 | | 0.6232 | 4.0050 | 1600 | 0.7186 | 0.7409 | | 0.6093 | 4.5056 | 1800 | 0.7048 | 0.6434 | | 0.5767 | 5.0063 | 2000 | 0.6521 | 0.6474 | | 0.5628 | 5.5069 | 2200 | 0.6322 | 0.6018 | | 0.5569 | 6.0075 | 2400 | 0.6289 | 0.6078 | | 0.5156 | 6.5081 | 2600 | 0.6504 | 0.6374 | | 0.5074 | 7.0088 | 2800 | 0.6638 | 0.6222 | | 0.4906 | 7.5094 | 3000 | 0.6744 | 0.5884 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0