--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - natbed - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-all-bem-natbed-n-model results: [] --- # mms-1b-all-bem-natbed-n-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co./facebook/mms-1b-all) on the NATBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.5309 - Wer: 0.4631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 7.3623 | 0.2809 | 100 | 0.9287 | 0.7283 | | 0.9213 | 0.5618 | 200 | 0.6511 | 0.5931 | | 0.7224 | 0.8427 | 300 | 0.6387 | 0.5434 | | 0.7132 | 1.1236 | 400 | 0.6140 | 0.5213 | | 0.7195 | 1.4045 | 500 | 0.6097 | 0.5146 | | 0.7054 | 1.6854 | 600 | 0.6145 | 0.5126 | | 0.7417 | 1.9663 | 700 | 0.6062 | 0.5257 | | 0.7029 | 2.2472 | 800 | 0.6022 | 0.4947 | | 0.6845 | 2.5281 | 900 | 0.5886 | 0.5023 | | 0.663 | 2.8090 | 1000 | 0.5915 | 0.4926 | | 0.7129 | 3.0899 | 1100 | 0.5833 | 0.4920 | | 0.6735 | 3.3708 | 1200 | 0.5877 | 0.4832 | | 0.672 | 3.6517 | 1300 | 0.5863 | 0.5151 | | 0.6494 | 3.9326 | 1400 | 0.5795 | 0.4844 | | 0.7049 | 4.2135 | 1500 | 0.5724 | 0.4716 | | 0.5898 | 4.4944 | 1600 | 0.5640 | 0.4762 | | 0.6581 | 4.7753 | 1700 | 0.5582 | 0.4724 | | 0.6262 | 5.0562 | 1800 | 0.5447 | 0.4751 | | 0.6179 | 5.3371 | 1900 | 0.5497 | 0.4656 | | 0.5896 | 5.6180 | 2000 | 0.5444 | 0.4779 | | 0.6438 | 5.8989 | 2100 | 0.5399 | 0.4700 | | 0.6086 | 6.1798 | 2200 | 0.5520 | 0.4598 | | 0.6226 | 6.4607 | 2300 | 0.5386 | 0.4797 | | 0.6148 | 6.7416 | 2400 | 0.5574 | 0.4680 | | 0.5838 | 7.0225 | 2500 | 0.5497 | 0.4639 | | 0.5407 | 7.3034 | 2600 | 0.5377 | 0.4631 | | 0.6186 | 7.5843 | 2700 | 0.5404 | 0.4715 | | 0.5922 | 7.8652 | 2800 | 0.5381 | 0.4609 | | 0.5799 | 8.1461 | 2900 | 0.5312 | 0.4620 | | 0.5914 | 8.4270 | 3000 | 0.5309 | 0.4631 | | 0.6194 | 8.7079 | 3100 | 0.5317 | 0.4678 | | 0.5851 | 8.9888 | 3200 | 0.5389 | 0.4575 | | 0.5764 | 9.2697 | 3300 | 0.5579 | 0.4550 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0