File size: 3,486 Bytes
5093e09 4b1c2de 5093e09 4b1c2de 5093e09 4b1c2de 5093e09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- natbed
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-bem-natbed-n-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mms-1b-all-bem-natbed-n-model
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co./facebook/mms-1b-all) on the NATBED - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5309
- Wer: 0.4631
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 7.3623 | 0.2809 | 100 | 0.9287 | 0.7283 |
| 0.9213 | 0.5618 | 200 | 0.6511 | 0.5931 |
| 0.7224 | 0.8427 | 300 | 0.6387 | 0.5434 |
| 0.7132 | 1.1236 | 400 | 0.6140 | 0.5213 |
| 0.7195 | 1.4045 | 500 | 0.6097 | 0.5146 |
| 0.7054 | 1.6854 | 600 | 0.6145 | 0.5126 |
| 0.7417 | 1.9663 | 700 | 0.6062 | 0.5257 |
| 0.7029 | 2.2472 | 800 | 0.6022 | 0.4947 |
| 0.6845 | 2.5281 | 900 | 0.5886 | 0.5023 |
| 0.663 | 2.8090 | 1000 | 0.5915 | 0.4926 |
| 0.7129 | 3.0899 | 1100 | 0.5833 | 0.4920 |
| 0.6735 | 3.3708 | 1200 | 0.5877 | 0.4832 |
| 0.672 | 3.6517 | 1300 | 0.5863 | 0.5151 |
| 0.6494 | 3.9326 | 1400 | 0.5795 | 0.4844 |
| 0.7049 | 4.2135 | 1500 | 0.5724 | 0.4716 |
| 0.5898 | 4.4944 | 1600 | 0.5640 | 0.4762 |
| 0.6581 | 4.7753 | 1700 | 0.5582 | 0.4724 |
| 0.6262 | 5.0562 | 1800 | 0.5447 | 0.4751 |
| 0.6179 | 5.3371 | 1900 | 0.5497 | 0.4656 |
| 0.5896 | 5.6180 | 2000 | 0.5444 | 0.4779 |
| 0.6438 | 5.8989 | 2100 | 0.5399 | 0.4700 |
| 0.6086 | 6.1798 | 2200 | 0.5520 | 0.4598 |
| 0.6226 | 6.4607 | 2300 | 0.5386 | 0.4797 |
| 0.6148 | 6.7416 | 2400 | 0.5574 | 0.4680 |
| 0.5838 | 7.0225 | 2500 | 0.5497 | 0.4639 |
| 0.5407 | 7.3034 | 2600 | 0.5377 | 0.4631 |
| 0.6186 | 7.5843 | 2700 | 0.5404 | 0.4715 |
| 0.5922 | 7.8652 | 2800 | 0.5381 | 0.4609 |
| 0.5799 | 8.1461 | 2900 | 0.5312 | 0.4620 |
| 0.5914 | 8.4270 | 3000 | 0.5309 | 0.4631 |
| 0.6194 | 8.7079 | 3100 | 0.5317 | 0.4678 |
| 0.5851 | 8.9888 | 3200 | 0.5389 | 0.4575 |
| 0.5764 | 9.2697 | 3300 | 0.5579 | 0.4550 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|