Meng Chen
commited on
Commit
·
ef35004
1
Parent(s):
1c6d641
update handler
Browse files- .gitattributes +1 -0
- __pycache__/handler.cpython-311.pyc +0 -0
- elevator.jpg +3 -0
- handler.py +0 -1
- test.ipynb +104 -0
.gitattributes
CHANGED
@@ -31,3 +31,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
31 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
32 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
33 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
31 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
32 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
33 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
34 |
+
elevator.jpg filter=lfs diff=lfs merge=lfs -text
|
__pycache__/handler.cpython-311.pyc
ADDED
Binary file (5.17 kB). View file
|
|
elevator.jpg
ADDED
![]() |
Git LFS Details
|
handler.py
CHANGED
@@ -23,7 +23,6 @@ class EndpointHandler():
|
|
23 |
Return:
|
24 |
A :obj:`list` | `dict`: will be serialized and returned
|
25 |
"""
|
26 |
-
|
27 |
if "image" not in data or "text" not in data:
|
28 |
return [{"error": "Missing 'image' or 'text' key in input data"}]
|
29 |
|
|
|
23 |
Return:
|
24 |
A :obj:`list` | `dict`: will be serialized and returned
|
25 |
"""
|
|
|
26 |
if "image" not in data or "text" not in data:
|
27 |
return [{"error": "Missing 'image' or 'text' key in input data"}]
|
28 |
|
test.ipynb
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Device set to use cpu\n"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"[\n",
|
20 |
+
" {\n",
|
21 |
+
" \"error\": \"Torch not compiled with CUDA enabled\"\n",
|
22 |
+
" }\n",
|
23 |
+
"]\n"
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"source": [
|
28 |
+
"import base64\n",
|
29 |
+
"import json\n",
|
30 |
+
"import io\n",
|
31 |
+
"from PIL import Image\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"import matplotlib.pyplot as plt\n",
|
34 |
+
"from handler import EndpointHandler \n",
|
35 |
+
"\n",
|
36 |
+
"def encode_image(image_path):\n",
|
37 |
+
" \"\"\"Encodes an image to base64.\"\"\"\n",
|
38 |
+
" with open(image_path, \"rb\") as image_file:\n",
|
39 |
+
" return base64.b64encode(image_file.read()).decode(\"utf-8\")\n",
|
40 |
+
"\n",
|
41 |
+
"def visualize_mask(mask):\n",
|
42 |
+
" \"\"\"Visualizes the segmentation mask using matplotlib.\"\"\"\n",
|
43 |
+
" mask = np.array(mask)\n",
|
44 |
+
" plt.imshow(mask, cmap=\"jet\", alpha=0.6)\n",
|
45 |
+
" plt.colorbar()\n",
|
46 |
+
" plt.title(\"Segmentation Mask\")\n",
|
47 |
+
" plt.show()\n",
|
48 |
+
"\n",
|
49 |
+
"if __name__ == \"__main__\":\n",
|
50 |
+
" # Initialize handler\n",
|
51 |
+
" handler = EndpointHandler()\n",
|
52 |
+
"\n",
|
53 |
+
" # Provide path to a test image\n",
|
54 |
+
" image_path = \"elevator.jpg\" # Replace with a valid image path\n",
|
55 |
+
"\n",
|
56 |
+
" # Encode image as base64\n",
|
57 |
+
" encoded_image = encode_image(image_path)\n",
|
58 |
+
"\n",
|
59 |
+
" # Define test input\n",
|
60 |
+
" test_input = {\n",
|
61 |
+
" \"image\": encoded_image,\n",
|
62 |
+
" \"text\": \"elevator\"\n",
|
63 |
+
" }\n",
|
64 |
+
"\n",
|
65 |
+
" # Run handler\n",
|
66 |
+
" result = handler(test_input)\n",
|
67 |
+
"\n",
|
68 |
+
" # Print and visualize the result\n",
|
69 |
+
" print(json.dumps(result, indent=2))\n",
|
70 |
+
"\n",
|
71 |
+
" if \"segmentation_mask\" in result[0]:\n",
|
72 |
+
" visualize_mask(result[0][\"segmentation_mask\"])"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": []
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"metadata": {
|
84 |
+
"kernelspec": {
|
85 |
+
"display_name": "a11y-agent",
|
86 |
+
"language": "python",
|
87 |
+
"name": "python3"
|
88 |
+
},
|
89 |
+
"language_info": {
|
90 |
+
"codemirror_mode": {
|
91 |
+
"name": "ipython",
|
92 |
+
"version": 3
|
93 |
+
},
|
94 |
+
"file_extension": ".py",
|
95 |
+
"mimetype": "text/x-python",
|
96 |
+
"name": "python",
|
97 |
+
"nbconvert_exporter": "python",
|
98 |
+
"pygments_lexer": "ipython3",
|
99 |
+
"version": "3.11.10"
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"nbformat": 4,
|
103 |
+
"nbformat_minor": 2
|
104 |
+
}
|