--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: CS685-text-summarizer-2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: train[:37%] args: default metrics: - name: Rouge1 type: rouge value: 17.4066 --- # CS685-text-summarizer-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7516 - Rouge1: 17.4066 - Rouge2: 14.022 - Rougel: 16.9378 - Rougelsum: 17.0519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.3529 | 1.0 | 1052 | 1.9277 | 17.1288 | 13.5932 | 16.6346 | 16.7728 | | 1.9686 | 2.0 | 2104 | 1.8297 | 17.2756 | 13.7685 | 16.7924 | 16.9242 | | 1.789 | 3.0 | 3156 | 1.7903 | 17.4219 | 14.0205 | 16.9082 | 17.0564 | | 1.6619 | 4.0 | 4208 | 1.7632 | 17.5055 | 14.1186 | 16.996 | 17.1265 | | 1.5819 | 5.0 | 5260 | 1.7516 | 17.4066 | 14.022 | 16.9378 | 17.0519 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3