nreimers
commited on
Commit
•
e46c24c
1
Parent(s):
b382f61
up
Browse files- CEBinaryAccuracyEvaluator_qnli-dev_results.csv +6 -0
- README.md +37 -0
- config.json +32 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
CEBinaryAccuracyEvaluator_qnli-dev_results.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,Accuracy
|
2 |
+
0,-1,0.9082921471718836
|
3 |
+
1,-1,0.9284276038806517
|
4 |
+
2,-1,0.9271462566355483
|
5 |
+
3,-1,0.9289767526999817
|
6 |
+
4,-1,0.9320885960095185
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Cross-Encoder for Quora Duplicate Questions Detection
|
2 |
+
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
3 |
+
|
4 |
+
## Training Data
|
5 |
+
Given a question and paragraph, can the question be answered by the paragraph? The models have been trained on the [GLUE QNLI](https://arxiv.org/abs/1804.07461) dataset, which transformed the [SQuAD dataset](https://rajpurkar.github.io/SQuAD-explorer/) into an NLI task.
|
6 |
+
|
7 |
+
## Performance
|
8 |
+
For performance results of this model, see [SBERT.net Pre-trained Cross-Encoder][https://www.sbert.net/docs/pretrained_cross-encoders.html].
|
9 |
+
|
10 |
+
## Usage
|
11 |
+
|
12 |
+
Pre-trained models can be used like this:
|
13 |
+
```python
|
14 |
+
from sentence_transformers import CrossEncoder
|
15 |
+
model = CrossEncoder('model_name')
|
16 |
+
scores = model.predict([('Query1', 'Paragraph1'), ('Query2', 'Paragraph2')])
|
17 |
+
|
18 |
+
#e.g.
|
19 |
+
scores = model.predict([('How many people live in Berlin?', 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'), ('What is the size of New York?', 'New York City is famous for the Metropolitan Museum of Art.')])
|
20 |
+
```
|
21 |
+
|
22 |
+
## Usage with Transformers AutoModel
|
23 |
+
You can use the model also directly with Transformers library (without SentenceTransformers library):
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
26 |
+
import torch
|
27 |
+
|
28 |
+
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
30 |
+
|
31 |
+
features = tokenizer(['How many people live in Berlin?', 'What is the size of New York?'], ['Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
32 |
+
|
33 |
+
model.eval()
|
34 |
+
with torch.no_grad():
|
35 |
+
scores = torch.nn.functional.sigmoid(model(**features).logits)
|
36 |
+
print(scores)
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/electra-base-discriminator",
|
3 |
+
"architectures": [
|
4 |
+
"ElectraForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"embedding_size": 768,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "electra",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"summary_activation": "gelu",
|
27 |
+
"summary_last_dropout": 0.1,
|
28 |
+
"summary_type": "first",
|
29 |
+
"summary_use_proj": true,
|
30 |
+
"type_vocab_size": 2,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8af0b8d3dd81812e835e9ba39593a3a2fb88314dd0945c3da64800930f6012c
|
3 |
+
size 438022601
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "google/electra-base-discriminator"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|