--- license: mit tags: - generated_from_trainer datasets: - sucx3_ner metrics: - precision - recall - f1 - accuracy model-index: - name: histbert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: sucx3_ner type: sucx3_ner config: simple_cased split: validation args: simple_cased metrics: - name: Precision type: precision value: 0.8784308810627898 - name: Recall type: recall value: 0.9261363636363636 - name: F1 type: f1 value: 0.9016530520357625 - name: Accuracy type: accuracy value: 0.992218705252845 --- # histbert-finetuned-ner This model is a fine-tuned version of [Riksarkivet/bert-base-cased-swe-historical](https://huggingface.co./Riksarkivet/bert-base-cased-swe-historical) on the sucx3_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0495 - Precision: 0.8784 - Recall: 0.9261 - F1: 0.9017 - Accuracy: 0.9922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0403 | 1.0 | 5391 | 0.0316 | 0.8496 | 0.8866 | 0.8677 | 0.9903 | | 0.0199 | 2.0 | 10782 | 0.0308 | 0.8814 | 0.9034 | 0.8923 | 0.9915 | | 0.0173 | 3.0 | 16173 | 0.0372 | 0.8698 | 0.9197 | 0.8940 | 0.9913 | | 0.0066 | 4.0 | 21564 | 0.0397 | 0.8783 | 0.9239 | 0.9005 | 0.9921 | | 0.0029 | 5.0 | 26955 | 0.0454 | 0.8855 | 0.9181 | 0.9015 | 0.9923 | | 0.0035 | 6.0 | 32346 | 0.0454 | 0.8834 | 0.9211 | 0.9019 | 0.9922 | | 0.0009 | 7.0 | 37737 | 0.0495 | 0.8784 | 0.9261 | 0.9017 | 0.9922 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3