shunk031 commited on
Commit
7455fc8
1 Parent(s): d87ea0a

Upload LayoutFIDNetV3

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LayoutFIDNetV3"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_layout_fidnet_v3.LayoutFIDNetV3Config",
7
+ "AutoModel": "modeling_layout_fidnet_v3.LayoutFIDNetV3"
8
+ },
9
+ "d_model": 256,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3"
15
+ },
16
+ "label2id": {
17
+ "LABEL_0": 0,
18
+ "LABEL_1": 1,
19
+ "LABEL_2": 2,
20
+ "LABEL_3": 3
21
+ },
22
+ "max_bbox": 10,
23
+ "model_type": "layoutdm_fidnet_v3",
24
+ "nhead": 4,
25
+ "num_layers": 4,
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.43.3"
28
+ }
configuration_layout_fidnet_v3.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class LayoutFIDNetV3Config(PretrainedConfig):
5
+ model_type = "layoutdm_fidnet_v3"
6
+
7
+ def __init__(
8
+ self,
9
+ num_labels: int = 1,
10
+ d_model: int = 256,
11
+ nhead: int = 4,
12
+ num_layers: int = 4,
13
+ max_bbox: int = 50,
14
+ **kwargs,
15
+ ) -> None:
16
+ super().__init__(
17
+ num_labels=num_labels,
18
+ **kwargs,
19
+ )
20
+ self.d_model = d_model
21
+ self.nhead = nhead
22
+ self.num_layers = num_layers
23
+ self.max_bbox = max_bbox
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4525657c114d0ec259692cbb809d0907b3091aa211479fb05d25214c4beb5446
3
+ size 11655965
modeling_layout_fidnet_v3.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from transformers.modeling_utils import PreTrainedModel
8
+ from transformers.utils import ModelOutput
9
+
10
+ from .configuration_layout_fidnet_v3 import LayoutFIDNetV3Config
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ @dataclass
16
+ class LayoutFIDNetV3Output(ModelOutput):
17
+ logit_disc: torch.Tensor
18
+ logit_cls: torch.Tensor
19
+ bbox_pred: torch.Tensor
20
+
21
+
22
+ class TransformerWithToken(nn.Module):
23
+ def __init__(
24
+ self,
25
+ d_model: int,
26
+ nhead: int,
27
+ dim_feedforward: int,
28
+ num_layers: int,
29
+ ) -> None:
30
+ super().__init__()
31
+
32
+ self.token = nn.Parameter(torch.randn(1, 1, d_model))
33
+ token_mask = torch.zeros(1, 1, dtype=torch.bool)
34
+ self.register_buffer("token_mask", token_mask)
35
+
36
+ self.core = nn.TransformerEncoder(
37
+ nn.TransformerEncoderLayer(
38
+ d_model=d_model,
39
+ nhead=nhead,
40
+ dim_feedforward=dim_feedforward,
41
+ ),
42
+ num_layers=num_layers,
43
+ )
44
+
45
+ def forward(self, x, src_key_padding_mask):
46
+ # x: [N, B, E]
47
+ # padding_mask: [B, N]
48
+ # `False` for valid values
49
+ # `True` for padded values
50
+
51
+ B = x.size(1)
52
+
53
+ token = self.token.expand(-1, B, -1)
54
+ x = torch.cat([token, x], dim=0)
55
+
56
+ token_mask = self.token_mask.expand(B, -1)
57
+ padding_mask = torch.cat([token_mask, src_key_padding_mask], dim=1)
58
+
59
+ x = self.core(x, src_key_padding_mask=padding_mask)
60
+
61
+ return x
62
+
63
+
64
+ class LayoutFIDNetV3(PreTrainedModel):
65
+ config_class = LayoutFIDNetV3Config
66
+
67
+ def __init__(self, config: LayoutFIDNetV3Config) -> None:
68
+ super().__init__(config)
69
+
70
+ # encoder
71
+ self.emb_label = nn.Embedding(config.num_labels, config.d_model)
72
+ self.fc_bbox = nn.Linear(4, config.d_model)
73
+ self.enc_fc_in = nn.Linear(config.d_model * 2, config.d_model)
74
+
75
+ self.enc_transformer = TransformerWithToken(
76
+ d_model=config.d_model,
77
+ dim_feedforward=config.d_model // 2,
78
+ nhead=config.nhead,
79
+ num_layers=config.num_layers,
80
+ )
81
+
82
+ self.fc_out_disc = nn.Linear(config.d_model, 1)
83
+
84
+ # decoder
85
+ self.pos_token = nn.Parameter(torch.rand(config.max_bbox, 1, config.d_model))
86
+ self.dec_fc_in = nn.Linear(config.d_model * 2, config.d_model)
87
+
88
+ te = nn.TransformerEncoderLayer(
89
+ d_model=config.d_model,
90
+ nhead=config.nhead,
91
+ dim_feedforward=config.d_model // 2,
92
+ )
93
+ self.dec_transformer = nn.TransformerEncoder(te, num_layers=config.num_layers)
94
+
95
+ self.fc_out_cls = nn.Linear(config.d_model, config.num_labels)
96
+ self.fc_out_bbox = nn.Linear(config.d_model, 4)
97
+
98
+ def extract_features(self, bbox, label, padding_mask):
99
+ b = self.fc_bbox(bbox)
100
+ l = self.emb_label(label)
101
+ x = self.enc_fc_in(torch.cat([b, l], dim=-1))
102
+ x = torch.relu(x).permute(1, 0, 2)
103
+ x = self.enc_transformer(x, padding_mask)
104
+ return x[0]
105
+
106
+ def forward(self, bbox, label, padding_mask):
107
+ B, N, _ = bbox.size()
108
+ x = self.extract_features(bbox, label, padding_mask)
109
+
110
+ logit_disc = self.fc_out_disc(x).squeeze(-1)
111
+
112
+ x = x.unsqueeze(0).expand(N, -1, -1)
113
+ t = self.pos_token[:N].expand(-1, B, -1)
114
+ x = torch.cat([x, t], dim=-1)
115
+ x = torch.relu(self.dec_fc_in(x))
116
+
117
+ x = self.dec_transformer(x, src_key_padding_mask=padding_mask)
118
+ # x = x.permute(1, 0, 2)[~padding_mask]
119
+ x = x.permute(1, 0, 2)
120
+
121
+ # logit_cls: [B, N, L] bbox_pred: [B, N, 4]
122
+ logit_cls = self.fc_out_cls(x)
123
+ bbox_pred = torch.sigmoid(self.fc_out_bbox(x))
124
+
125
+ return LayoutFIDNetV3Output(
126
+ logit_disc=logit_disc, logit_cls=logit_cls, bbox_pred=bbox_pred
127
+ )
128
+
129
+
130
+ def convert_from_checkpoint(
131
+ repo_id: str, filename: str, config: Optional[LayoutFIDNetV3Config] = None
132
+ ) -> LayoutFIDNetV3:
133
+ from huggingface_hub import hf_hub_download
134
+
135
+ checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
136
+ config = config or LayoutFIDNetV3Config()
137
+ model = LayoutFIDNetV3(config)
138
+
139
+ logger.info(f"Loading model from {checkpoint_path}")
140
+ state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
141
+
142
+ model.load_state_dict(state_dict, strict=True)
143
+ model.eval()
144
+
145
+ return model