shunk031 commited on
Commit
c220a5a
1 Parent(s): cffb46b

Upload LayoutFIDNetV3

Browse files
config.json CHANGED
@@ -1,30 +1,30 @@
1
  {
2
  "architectures": [
3
- "LayoutDmFIDNetV3"
4
  ],
5
  "auto_map": {
6
- "AutoConfig": "configuration_fidnet_v3.LayoutDmFIDNetV3Config",
7
- "AutoModel": "modeling_fidnet_v3.LayoutDmFIDNetV3"
8
  },
9
  "d_model": 256,
10
  "id2label": {
11
- "0": "text",
12
- "1": "title",
13
- "2": "list",
14
- "3": "table",
15
- "4": "figure"
16
  },
17
  "label2id": {
18
- "figure": 4,
19
- "list": 2,
20
- "table": 3,
21
- "text": 0,
22
- "title": 1
23
  },
24
  "max_bbox": 25,
25
  "model_type": "layoutdm_fidnet_v3",
26
  "nhead": 4,
27
  "num_layers": 4,
28
  "torch_dtype": "float32",
29
- "transformers_version": "4.36.2"
30
  }
 
1
  {
2
  "architectures": [
3
+ "LayoutFIDNetV3"
4
  ],
5
  "auto_map": {
6
+ "AutoConfig": "configuration_layout_fidnet_v3.LayoutFIDNetV3Config",
7
+ "AutoModel": "modeling_layout_fidnet_v3.LayoutFIDNetV3"
8
  },
9
  "d_model": 256,
10
  "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4"
16
  },
17
  "label2id": {
18
+ "LABEL_0": 0,
19
+ "LABEL_1": 1,
20
+ "LABEL_2": 2,
21
+ "LABEL_3": 3,
22
+ "LABEL_4": 4
23
  },
24
  "max_bbox": 25,
25
  "model_type": "layoutdm_fidnet_v3",
26
  "nhead": 4,
27
  "num_layers": 4,
28
  "torch_dtype": "float32",
29
+ "transformers_version": "4.43.3"
30
  }
configuration_layout_fidnet_v3.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class LayoutFIDNetV3Config(PretrainedConfig):
5
+ model_type = "layoutdm_fidnet_v3"
6
+
7
+ def __init__(
8
+ self,
9
+ num_labels: int = 1,
10
+ d_model: int = 256,
11
+ nhead: int = 4,
12
+ num_layers: int = 4,
13
+ max_bbox: int = 50,
14
+ **kwargs,
15
+ ) -> None:
16
+ super().__init__(
17
+ num_labels=num_labels,
18
+ **kwargs,
19
+ )
20
+ self.d_model = d_model
21
+ self.nhead = nhead
22
+ self.num_layers = num_layers
23
+ self.max_bbox = max_bbox
modeling_layout_fidnet_v3.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from transformers.modeling_utils import PreTrainedModel
8
+ from transformers.utils import ModelOutput
9
+
10
+ from .configuration_layout_fidnet_v3 import LayoutFIDNetV3Config
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ @dataclass
16
+ class LayoutFIDNetV3Output(ModelOutput):
17
+ logit_disc: torch.Tensor
18
+ logit_cls: torch.Tensor
19
+ bbox_pred: torch.Tensor
20
+
21
+
22
+ class TransformerWithToken(nn.Module):
23
+ def __init__(
24
+ self,
25
+ d_model: int,
26
+ nhead: int,
27
+ dim_feedforward: int,
28
+ num_layers: int,
29
+ ) -> None:
30
+ super().__init__()
31
+
32
+ self.token = nn.Parameter(torch.randn(1, 1, d_model))
33
+ token_mask = torch.zeros(1, 1, dtype=torch.bool)
34
+ self.register_buffer("token_mask", token_mask)
35
+
36
+ self.core = nn.TransformerEncoder(
37
+ nn.TransformerEncoderLayer(
38
+ d_model=d_model,
39
+ nhead=nhead,
40
+ dim_feedforward=dim_feedforward,
41
+ ),
42
+ num_layers=num_layers,
43
+ )
44
+
45
+ def forward(self, x, src_key_padding_mask):
46
+ # x: [N, B, E]
47
+ # padding_mask: [B, N]
48
+ # `False` for valid values
49
+ # `True` for padded values
50
+
51
+ B = x.size(1)
52
+
53
+ token = self.token.expand(-1, B, -1)
54
+ x = torch.cat([token, x], dim=0)
55
+
56
+ token_mask = self.token_mask.expand(B, -1)
57
+ padding_mask = torch.cat([token_mask, src_key_padding_mask], dim=1)
58
+
59
+ x = self.core(x, src_key_padding_mask=padding_mask)
60
+
61
+ return x
62
+
63
+
64
+ class LayoutFIDNetV3(PreTrainedModel):
65
+ config_class = LayoutFIDNetV3Config
66
+
67
+ def __init__(self, config: LayoutFIDNetV3Config) -> None:
68
+ super().__init__(config)
69
+
70
+ # encoder
71
+ self.emb_label = nn.Embedding(config.num_labels, config.d_model)
72
+ self.fc_bbox = nn.Linear(4, config.d_model)
73
+ self.enc_fc_in = nn.Linear(config.d_model * 2, config.d_model)
74
+
75
+ self.enc_transformer = TransformerWithToken(
76
+ d_model=config.d_model,
77
+ dim_feedforward=config.d_model // 2,
78
+ nhead=config.nhead,
79
+ num_layers=config.num_layers,
80
+ )
81
+
82
+ self.fc_out_disc = nn.Linear(config.d_model, 1)
83
+
84
+ # decoder
85
+ self.pos_token = nn.Parameter(torch.rand(config.max_bbox, 1, config.d_model))
86
+ self.dec_fc_in = nn.Linear(config.d_model * 2, config.d_model)
87
+
88
+ te = nn.TransformerEncoderLayer(
89
+ d_model=config.d_model,
90
+ nhead=config.nhead,
91
+ dim_feedforward=config.d_model // 2,
92
+ )
93
+ self.dec_transformer = nn.TransformerEncoder(te, num_layers=config.num_layers)
94
+
95
+ self.fc_out_cls = nn.Linear(config.d_model, config.num_labels)
96
+ self.fc_out_bbox = nn.Linear(config.d_model, 4)
97
+
98
+ def extract_features(self, bbox, label, padding_mask):
99
+ b = self.fc_bbox(bbox)
100
+ l = self.emb_label(label)
101
+ x = self.enc_fc_in(torch.cat([b, l], dim=-1))
102
+ x = torch.relu(x).permute(1, 0, 2)
103
+ x = self.enc_transformer(x, padding_mask)
104
+ return x[0]
105
+
106
+ def forward(self, bbox, label, padding_mask):
107
+ B, N, _ = bbox.size()
108
+ x = self.extract_features(bbox, label, padding_mask)
109
+
110
+ logit_disc = self.fc_out_disc(x).squeeze(-1)
111
+
112
+ x = x.unsqueeze(0).expand(N, -1, -1)
113
+ t = self.pos_token[:N].expand(-1, B, -1)
114
+ x = torch.cat([x, t], dim=-1)
115
+ x = torch.relu(self.dec_fc_in(x))
116
+
117
+ x = self.dec_transformer(x, src_key_padding_mask=padding_mask)
118
+ # x = x.permute(1, 0, 2)[~padding_mask]
119
+ x = x.permute(1, 0, 2)
120
+
121
+ # logit_cls: [B, N, L] bbox_pred: [B, N, 4]
122
+ logit_cls = self.fc_out_cls(x)
123
+ bbox_pred = torch.sigmoid(self.fc_out_bbox(x))
124
+
125
+ return LayoutFIDNetV3Output(
126
+ logit_disc=logit_disc, logit_cls=logit_cls, bbox_pred=bbox_pred
127
+ )
128
+
129
+
130
+ def convert_from_checkpoint(
131
+ repo_id: str, filename: str, config: Optional[LayoutFIDNetV3Config] = None
132
+ ) -> LayoutFIDNetV3:
133
+ from huggingface_hub import hf_hub_download
134
+
135
+ checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
136
+ config = config or LayoutFIDNetV3Config()
137
+ model = LayoutFIDNetV3(config)
138
+
139
+ logger.info(f"Loading model from {checkpoint_path}")
140
+ state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
141
+
142
+ model.load_state_dict(state_dict, strict=True)
143
+ model.eval()
144
+
145
+ return model