Upload LayoutFIDNetV3
Browse files- config.json +14 -14
- configuration_layout_fidnet_v3.py +23 -0
- modeling_layout_fidnet_v3.py +145 -0
config.json
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "
|
7 |
-
"AutoModel": "
|
8 |
},
|
9 |
"d_model": 256,
|
10 |
"id2label": {
|
11 |
-
"0": "
|
12 |
-
"1": "
|
13 |
-
"2": "
|
14 |
-
"3": "
|
15 |
-
"4": "
|
16 |
},
|
17 |
"label2id": {
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
},
|
24 |
"max_bbox": 25,
|
25 |
"model_type": "layoutdm_fidnet_v3",
|
26 |
"nhead": 4,
|
27 |
"num_layers": 4,
|
28 |
"torch_dtype": "float32",
|
29 |
-
"transformers_version": "4.
|
30 |
}
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"LayoutFIDNetV3"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_layout_fidnet_v3.LayoutFIDNetV3Config",
|
7 |
+
"AutoModel": "modeling_layout_fidnet_v3.LayoutFIDNetV3"
|
8 |
},
|
9 |
"d_model": 256,
|
10 |
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2",
|
14 |
+
"3": "LABEL_3",
|
15 |
+
"4": "LABEL_4"
|
16 |
},
|
17 |
"label2id": {
|
18 |
+
"LABEL_0": 0,
|
19 |
+
"LABEL_1": 1,
|
20 |
+
"LABEL_2": 2,
|
21 |
+
"LABEL_3": 3,
|
22 |
+
"LABEL_4": 4
|
23 |
},
|
24 |
"max_bbox": 25,
|
25 |
"model_type": "layoutdm_fidnet_v3",
|
26 |
"nhead": 4,
|
27 |
"num_layers": 4,
|
28 |
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.43.3"
|
30 |
}
|
configuration_layout_fidnet_v3.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LayoutFIDNetV3Config(PretrainedConfig):
|
5 |
+
model_type = "layoutdm_fidnet_v3"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
num_labels: int = 1,
|
10 |
+
d_model: int = 256,
|
11 |
+
nhead: int = 4,
|
12 |
+
num_layers: int = 4,
|
13 |
+
max_bbox: int = 50,
|
14 |
+
**kwargs,
|
15 |
+
) -> None:
|
16 |
+
super().__init__(
|
17 |
+
num_labels=num_labels,
|
18 |
+
**kwargs,
|
19 |
+
)
|
20 |
+
self.d_model = d_model
|
21 |
+
self.nhead = nhead
|
22 |
+
self.num_layers = num_layers
|
23 |
+
self.max_bbox = max_bbox
|
modeling_layout_fidnet_v3.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers.modeling_utils import PreTrainedModel
|
8 |
+
from transformers.utils import ModelOutput
|
9 |
+
|
10 |
+
from .configuration_layout_fidnet_v3 import LayoutFIDNetV3Config
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class LayoutFIDNetV3Output(ModelOutput):
|
17 |
+
logit_disc: torch.Tensor
|
18 |
+
logit_cls: torch.Tensor
|
19 |
+
bbox_pred: torch.Tensor
|
20 |
+
|
21 |
+
|
22 |
+
class TransformerWithToken(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
d_model: int,
|
26 |
+
nhead: int,
|
27 |
+
dim_feedforward: int,
|
28 |
+
num_layers: int,
|
29 |
+
) -> None:
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.token = nn.Parameter(torch.randn(1, 1, d_model))
|
33 |
+
token_mask = torch.zeros(1, 1, dtype=torch.bool)
|
34 |
+
self.register_buffer("token_mask", token_mask)
|
35 |
+
|
36 |
+
self.core = nn.TransformerEncoder(
|
37 |
+
nn.TransformerEncoderLayer(
|
38 |
+
d_model=d_model,
|
39 |
+
nhead=nhead,
|
40 |
+
dim_feedforward=dim_feedforward,
|
41 |
+
),
|
42 |
+
num_layers=num_layers,
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x, src_key_padding_mask):
|
46 |
+
# x: [N, B, E]
|
47 |
+
# padding_mask: [B, N]
|
48 |
+
# `False` for valid values
|
49 |
+
# `True` for padded values
|
50 |
+
|
51 |
+
B = x.size(1)
|
52 |
+
|
53 |
+
token = self.token.expand(-1, B, -1)
|
54 |
+
x = torch.cat([token, x], dim=0)
|
55 |
+
|
56 |
+
token_mask = self.token_mask.expand(B, -1)
|
57 |
+
padding_mask = torch.cat([token_mask, src_key_padding_mask], dim=1)
|
58 |
+
|
59 |
+
x = self.core(x, src_key_padding_mask=padding_mask)
|
60 |
+
|
61 |
+
return x
|
62 |
+
|
63 |
+
|
64 |
+
class LayoutFIDNetV3(PreTrainedModel):
|
65 |
+
config_class = LayoutFIDNetV3Config
|
66 |
+
|
67 |
+
def __init__(self, config: LayoutFIDNetV3Config) -> None:
|
68 |
+
super().__init__(config)
|
69 |
+
|
70 |
+
# encoder
|
71 |
+
self.emb_label = nn.Embedding(config.num_labels, config.d_model)
|
72 |
+
self.fc_bbox = nn.Linear(4, config.d_model)
|
73 |
+
self.enc_fc_in = nn.Linear(config.d_model * 2, config.d_model)
|
74 |
+
|
75 |
+
self.enc_transformer = TransformerWithToken(
|
76 |
+
d_model=config.d_model,
|
77 |
+
dim_feedforward=config.d_model // 2,
|
78 |
+
nhead=config.nhead,
|
79 |
+
num_layers=config.num_layers,
|
80 |
+
)
|
81 |
+
|
82 |
+
self.fc_out_disc = nn.Linear(config.d_model, 1)
|
83 |
+
|
84 |
+
# decoder
|
85 |
+
self.pos_token = nn.Parameter(torch.rand(config.max_bbox, 1, config.d_model))
|
86 |
+
self.dec_fc_in = nn.Linear(config.d_model * 2, config.d_model)
|
87 |
+
|
88 |
+
te = nn.TransformerEncoderLayer(
|
89 |
+
d_model=config.d_model,
|
90 |
+
nhead=config.nhead,
|
91 |
+
dim_feedforward=config.d_model // 2,
|
92 |
+
)
|
93 |
+
self.dec_transformer = nn.TransformerEncoder(te, num_layers=config.num_layers)
|
94 |
+
|
95 |
+
self.fc_out_cls = nn.Linear(config.d_model, config.num_labels)
|
96 |
+
self.fc_out_bbox = nn.Linear(config.d_model, 4)
|
97 |
+
|
98 |
+
def extract_features(self, bbox, label, padding_mask):
|
99 |
+
b = self.fc_bbox(bbox)
|
100 |
+
l = self.emb_label(label)
|
101 |
+
x = self.enc_fc_in(torch.cat([b, l], dim=-1))
|
102 |
+
x = torch.relu(x).permute(1, 0, 2)
|
103 |
+
x = self.enc_transformer(x, padding_mask)
|
104 |
+
return x[0]
|
105 |
+
|
106 |
+
def forward(self, bbox, label, padding_mask):
|
107 |
+
B, N, _ = bbox.size()
|
108 |
+
x = self.extract_features(bbox, label, padding_mask)
|
109 |
+
|
110 |
+
logit_disc = self.fc_out_disc(x).squeeze(-1)
|
111 |
+
|
112 |
+
x = x.unsqueeze(0).expand(N, -1, -1)
|
113 |
+
t = self.pos_token[:N].expand(-1, B, -1)
|
114 |
+
x = torch.cat([x, t], dim=-1)
|
115 |
+
x = torch.relu(self.dec_fc_in(x))
|
116 |
+
|
117 |
+
x = self.dec_transformer(x, src_key_padding_mask=padding_mask)
|
118 |
+
# x = x.permute(1, 0, 2)[~padding_mask]
|
119 |
+
x = x.permute(1, 0, 2)
|
120 |
+
|
121 |
+
# logit_cls: [B, N, L] bbox_pred: [B, N, 4]
|
122 |
+
logit_cls = self.fc_out_cls(x)
|
123 |
+
bbox_pred = torch.sigmoid(self.fc_out_bbox(x))
|
124 |
+
|
125 |
+
return LayoutFIDNetV3Output(
|
126 |
+
logit_disc=logit_disc, logit_cls=logit_cls, bbox_pred=bbox_pred
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
def convert_from_checkpoint(
|
131 |
+
repo_id: str, filename: str, config: Optional[LayoutFIDNetV3Config] = None
|
132 |
+
) -> LayoutFIDNetV3:
|
133 |
+
from huggingface_hub import hf_hub_download
|
134 |
+
|
135 |
+
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
136 |
+
config = config or LayoutFIDNetV3Config()
|
137 |
+
model = LayoutFIDNetV3(config)
|
138 |
+
|
139 |
+
logger.info(f"Loading model from {checkpoint_path}")
|
140 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
|
141 |
+
|
142 |
+
model.load_state_dict(state_dict, strict=True)
|
143 |
+
model.eval()
|
144 |
+
|
145 |
+
return model
|