--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - wer model-index: - name: my_awesome_asr_mind_model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: minds14 config: en-US split: None args: en-US metrics: - name: Wer type: wer value: 1.0 --- # my_awesome_asr_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 3.2396 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.3332 | 200.0 | 1000 | 3.4002 | 1.0 | | 3.0081 | 400.0 | 2000 | 3.2396 | 1.0 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1