--- tags: - Question Answering metrics: - rouge model-index: - name: question-answering-generative-t5-v1-base-s-q-c results: [] --- # Question Answering Generative The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text.
Model is generative (t5-v1-base), fine-tuned from [question-generation-auto-hints-t5-v1-base-s-q-c](https://huggingface.co./consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c) with - **Loss:** 0.6751 & **Rougel:** 0.8022 performance scores. [Live Demo: Question Answering Encoders vs Generative](https://huggingface.co./spaces/consciousAI/question_answering) [Encoder based Question Answering V1](https://huggingface.co./consciousAI/question-answering-roberta-base-s/)
[Encoder based Question Answering V2](https://huggingface.co./consciousAI/question-answering-roberta-base-s-v2/) Example code: ``` from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer ) def _generate(query, context, model, device): FT_MODEL = AutoModelForSeq2SeqLM.from_pretrained(model).to(device) FT_MODEL_TOKENIZER = AutoTokenizer.from_pretrained(model) input_text = "question: " + query + " question_context: " + context input_tokenized = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True, padding='max_length', max_length=1024).to(device) _tok_count_assessment = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True).to(device) summary_ids = FT_MODEL.generate(input_tokenized, max_length=30, min_length=5, num_beams=2, early_stopping=True, ) output = [FT_MODEL_TOKENIZER.decode(id, clean_up_tokenization_spaces=True, skip_special_tokens=True) for id in summary_ids] return str(output[0]) device = [0 if torch.cuda.is_available() else 'cpu'][0] _generate(query, context, model="consciousAI/t5-v1-base-s-q-c-multi-task-qgen-v2", device=device) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.5479 | 1.0 | 14600 | 0.5104 | 0.7672 | 0.4898 | 0.7666 | 0.7666 | | 0.3647 | 2.0 | 29200 | 0.5180 | 0.7862 | 0.4995 | 0.7855 | 0.7858 | | 0.2458 | 3.0 | 43800 | 0.5302 | 0.7938 | 0.5039 | 0.7932 | 0.7935 | | 0.1532 | 4.0 | 58400 | 0.6024 | 0.7989 | 0.514 | 0.7984 | 0.7984 | | 0.0911 | 5.0 | 73000 | 0.6751 | 0.8028 | 0.5168 | 0.8022 | 0.8022 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.0