--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- # my_awesome_model This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co./allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5132 - Accuracy: 0.9034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 88 | 0.3975 | 0.9006 | | No log | 2.0 | 176 | 0.3922 | 0.9034 | | No log | 3.0 | 264 | 0.4732 | 0.9034 | | No log | 4.0 | 352 | 0.5226 | 0.8949 | | No log | 5.0 | 440 | 0.4903 | 0.9034 | | 0.0513 | 6.0 | 528 | 0.5203 | 0.9062 | | 0.0513 | 7.0 | 616 | 0.5192 | 0.8949 | | 0.0513 | 8.0 | 704 | 0.5132 | 0.9034 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2