--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer - cybersecurity metrics: - accuracy model-index: - name: my_awesome_model results: [] pipeline_tag: text-classification --- # vuln-cat This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co./allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5132 - Accuracy: 0.9034 ## Model description vuln-cat is a classification model based on fine-tuning of scibert. It categorizes CVE summaries into 11 types of vulnerabilities, with class labels including: ``` [ 'csrf', 'directory_traversal', 'file_inclusion', 'input_validation', 'memory_corruption', 'open_redirect', 'overflow', 'sql_injection', 'ssrf', 'xss', 'xxe' ] ``` ## Usage ```python from transformers import pipeline text = 'A path traversal exists in a specific dll of Trend Micro Mobile Security (Enterprise) 9.8 SP5 which could allow an authenticated remote attacker to delete arbitrary files.' classifier = pipeline( "text-classification", model="conflick0/vuln-cat", padding=True, truncation=True, max_length=512, ) classifier(text) # [{'label': 'directory_traversal', 'score': 0.9969494938850403}] ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 88 | 0.3975 | 0.9006 | | No log | 2.0 | 176 | 0.3922 | 0.9034 | | No log | 3.0 | 264 | 0.4732 | 0.9034 | | No log | 4.0 | 352 | 0.5226 | 0.8949 | | No log | 5.0 | 440 | 0.4903 | 0.9034 | | 0.0513 | 6.0 | 528 | 0.5203 | 0.9062 | | 0.0513 | 7.0 | 616 | 0.5192 | 0.8949 | | 0.0513 | 8.0 | 704 | 0.5132 | 0.9034 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2