ganler commited on
Commit
d24a863
·
verified ·
1 Parent(s): 007e788

Add instructions to run R1-AWQ on SGLang

Browse files
Files changed (1) hide show
  1. README.md +12 -0
README.md CHANGED
@@ -13,6 +13,8 @@ AWQ of DeepSeek R1.
13
 
14
  This quant modified some of the model code to fix an overflow issue when using float16.
15
 
 
 
16
  To serve using vLLM with 8x 80GB GPUs, use the following command:
17
  ```sh
18
  VLLM_WORKER_MULTIPROC_METHOD=spawn python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --max-num-batched-tokens 65536 --trust-remote-code --tensor-parallel-size 8 --gpu-memory-utilization 0.97 --dtype float16 --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ
@@ -26,3 +28,13 @@ Inference speed with batch size 1 and short prompt:
26
  Note:
27
  - Inference speed will be better than FP8 at low batch size but worse than FP8 at high batch size, this is the nature of low bit quantization.
28
  - vLLM supports MLA for AWQ now, you can run this model with full context length on just 8x 80GB GPUs.
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  This quant modified some of the model code to fix an overflow issue when using float16.
15
 
16
+ ## Serving with vLLM
17
+
18
  To serve using vLLM with 8x 80GB GPUs, use the following command:
19
  ```sh
20
  VLLM_WORKER_MULTIPROC_METHOD=spawn python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --max-num-batched-tokens 65536 --trust-remote-code --tensor-parallel-size 8 --gpu-memory-utilization 0.97 --dtype float16 --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ
 
28
  Note:
29
  - Inference speed will be better than FP8 at low batch size but worse than FP8 at high batch size, this is the nature of low bit quantization.
30
  - vLLM supports MLA for AWQ now, you can run this model with full context length on just 8x 80GB GPUs.
31
+
32
+ ## Serving with SGLang
33
+
34
+ ```sh
35
+ python3 -m sglang.launch_server --model cognitivecomputations/DeepSeek-R1-AWQ --tp 8 --trust-remote-code --dtype half
36
+ ```
37
+
38
+ Note:
39
+ - AWQ does not support BF16, so add the `--dtype half` flag if AWQ is used for quantization.
40
+ - For more information about running DeepSeek-R1 using SGLang, feel free to check out their [documentation](https://docs.sglang.ai/references/deepseek.html).