--- library_name: transformers license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: albert-base-v2-grammar-ner results: [] --- # albert-base-v2-grammar-ner This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1134 - Accuracy: 0.9870 - F1 Macro: 0.7941 - F1 Micro: 0.9008 - Precision Macro: 0.8789 - Precision Micro: 0.9569 - Recall Macro: 0.7518 - Recall Micro: 0.8510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro | Precision Macro | Precision Micro | Recall Macro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:---------------:|:------------:|:------------:| | 0.4297 | 1.0 | 93 | 0.2896 | 0.9313 | 0.1318 | 0.4462 | 0.1897 | 0.5163 | 0.1281 | 0.3928 | | 0.2521 | 2.0 | 186 | 0.2192 | 0.9452 | 0.2315 | 0.5160 | 0.3282 | 0.6752 | 0.1962 | 0.4176 | | 0.167 | 3.0 | 279 | 0.1630 | 0.9662 | 0.3546 | 0.7198 | 0.4142 | 0.8358 | 0.3295 | 0.6321 | | 0.1026 | 4.0 | 372 | 0.1343 | 0.9733 | 0.4185 | 0.7769 | 0.5241 | 0.8732 | 0.3797 | 0.6998 | | 0.0718 | 5.0 | 465 | 0.1231 | 0.9738 | 0.4644 | 0.7794 | 0.5584 | 0.8525 | 0.4382 | 0.7178 | | 0.0483 | 6.0 | 558 | 0.1269 | 0.9778 | 0.4778 | 0.8204 | 0.6262 | 0.9415 | 0.4164 | 0.7269 | | 0.0335 | 7.0 | 651 | 0.1162 | 0.9804 | 0.6028 | 0.8416 | 0.6985 | 0.8834 | 0.5846 | 0.8036 | | 0.0233 | 8.0 | 744 | 0.1203 | 0.9813 | 0.5736 | 0.8475 | 0.7429 | 0.9496 | 0.4988 | 0.7652 | | 0.0171 | 9.0 | 837 | 0.1052 | 0.9836 | 0.6502 | 0.8671 | 0.7023 | 0.8964 | 0.6490 | 0.8397 | | 0.01 | 10.0 | 930 | 0.1125 | 0.9805 | 0.6681 | 0.8477 | 0.6854 | 0.8535 | 0.6875 | 0.8420 | | 0.0084 | 11.0 | 1023 | 0.1058 | 0.9862 | 0.7195 | 0.8894 | 0.8004 | 0.9287 | 0.6870 | 0.8533 | | 0.0051 | 12.0 | 1116 | 0.1092 | 0.9870 | 0.8015 | 0.9015 | 0.8810 | 0.95 | 0.7612 | 0.8578 | | 0.0031 | 13.0 | 1209 | 0.1131 | 0.9865 | 0.8006 | 0.8983 | 0.8827 | 0.9429 | 0.7592 | 0.8578 | | 0.0017 | 14.0 | 1302 | 0.1106 | 0.9873 | 0.8058 | 0.9039 | 0.8748 | 0.9525 | 0.7749 | 0.8600 | | 0.0012 | 15.0 | 1395 | 0.1111 | 0.9875 | 0.7985 | 0.9058 | 0.8818 | 0.9596 | 0.7576 | 0.8578 | | 0.0009 | 16.0 | 1488 | 0.1128 | 0.9870 | 0.7941 | 0.9008 | 0.8789 | 0.9569 | 0.7518 | 0.8510 | | 0.0008 | 17.0 | 1581 | 0.1133 | 0.9870 | 0.7941 | 0.9008 | 0.8789 | 0.9569 | 0.7518 | 0.8510 | | 0.0008 | 18.0 | 1674 | 0.1134 | 0.9870 | 0.7941 | 0.9008 | 0.8789 | 0.9569 | 0.7518 | 0.8510 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3