codewithdark commited on
Commit
9063afa
·
verified ·
1 Parent(s): 0b511d0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -191
README.md CHANGED
@@ -1,199 +1,86 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - math
5
+ license: apache-2.0
6
+ datasets:
7
+ - openai/gsm8k
8
+ language:
9
+ - en
10
+ metrics:
11
+ - accuracy
12
+ base_model:
13
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
14
+ pipeline_tag: text-generation
15
  ---
16
+ # DeepMath-7B-L
17
 
18
+ ## Model Overview
19
+ DeepMath-7B-L are fine-tuned versions of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the [GSM8K dataset](https://huggingface.co/datasets/gsm8k). These models are designed for mathematical reasoning and problem-solving, excelling in arithmetic, algebra, and word problems.
 
 
 
20
 
21
  ## Model Details
22
+ - **Base Model:** DeepSeek-R1-Distill-Qwen-1.5B
23
+ - **Fine-Tuning Dataset:** GSM8K
24
+ - **Parameters:** 1.5 Billion
25
+ - **Task:** Mathematical Question Answering (Math QA)
26
+ - **Repositories:**
27
+ - [DeepMath-7B-L](https://huggingface.co/codewithdark/deepmath-7b-l) (LoRA adapter-enhanced model)
28
+ - **Commit Messages:**
29
+ - "Full merged model for math QA"
30
+ - "Added LoRA adapters for math reasoning"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Training Details
33
+ - **Dataset:** GSM8K (Grade School Math 8K) - a high-quality dataset for mathematical reasoning
34
+ - **Fine-Tuning Framework:** Hugging Face Transformers & PyTorch
35
+ - **Optimization Techniques:**
36
+ - AdamW Optimizer
37
+ - Learning rate scheduling
38
+ - Gradient accumulation
39
+ - Mixed precision training (FP16)
40
+ - **Training Steps:** Multiple epochs on a high-performance GPU cluster
41
+
42
+ ## Capabilities & Performance
43
+ DeepMath-7B-L excel in:
44
+ - Solving word problems with step-by-step reasoning
45
+ - Performing algebraic and arithmetic computations
46
+ - Understanding complex problem structures
47
+ - Generating structured solutions with explanations
48
+
49
+
50
+
51
+ ### DeepMath-7B-L (LoRA Adapter-Enhanced Model)
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained("codewithdark/deepmath-7b-l")
56
+ model = AutoModelForCausalLM.from_pretrained("codewithdark/deepmath-7b-l")
57
+
58
+ input_text = "Solve: 2x + 3 = 7"
59
+ inputs = tokenizer(input_text, return_tensors="pt")
60
+ outputs = model.generate(**inputs, max_length=100)
61
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
62
+ ```
63
+
64
+ ## Limitations
65
+ - May struggle with extremely complex mathematical proofs
66
+ - Performance is limited to the scope of GSM8K-type problems
67
+ - Potential biases in training data
68
+
69
+ ## Future Work
70
+ - Extending training to more diverse math datasets
71
+ - Exploring larger models for improved accuracy
72
+ - Fine-tuning on physics and higher-level mathematical reasoning datasets
73
+
74
+ ## License
75
+ This model is released under the Apache 2.0 License.
76
+
77
+ ## Citation
78
+ If you use these models, please cite:
79
+
80
+ @misc{DeepMath-7B-L,
81
+ author = {Ahsan},
82
+ title = {DeepMath-7B-L: LoRA Adapter Enhanced Model for Math Reasoning},
83
+ year = {2025},
84
+ url = {https://huggingface.co/codewithdark/deepmath-7b-l}
85
+ }
86
+ ```