--- widget: - text: "KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655" datasets: - multi_eurlex metrics: - f1 model-index: - name: coastalcph/danish-legal-longformer-eurlex-sd results: - task: type: text-classification name: Danish EURLEX (Level 2) dataset: name: multi_eurlex type: multi_eurlex config: multi_eurlex split: validation metrics: - name: Micro-F1 type: micro-f1 value: 0.76144 - name: Macro-F1 type: macro-f1 value: 0.52878 --- # Model description This model is a fine-tuned version of [coastalcph/danish-legal-longformer-base](https://huggingface.co./coastalcph/danish-legal-longformer-base) on the Danish part of [MultiEURLEX](https://huggingface.co./datasets/multi_eurlex) dataset using an additional Spectral Decoupling penalty ([Pezeshki et al., 2020](https://arxiv.org/abs/2011.09468). ## Training and evaluation data The Danish part of [MultiEURLEX](https://huggingface.co./datasets/multi_eurlex) dataset. ## Use of Model ### As a text classifier: ```python from transformers import pipeline import numpy as np # Init text classification pipeline text_cls_pipe = pipeline(task="text-classification", model="coastalcph/danish-legal-longformer-eurlex-sd", use_auth_token='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') # Encode and Classify document predictions = text_cls_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers " "ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler " "og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655") # Print prediction print(predictions) # [{'label': 'building and public works', 'score': 0.9626012444496155}] ``` ### As a feature extractor (document embedder): ```python from transformers import pipeline import numpy as np # Init feature extraction pipeline feature_extraction_pipe = pipeline(task="feature-extraction", model="coastalcph/danish-legal-longformer-eurlex-sd", use_auth_token='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') # Encode document predictions = feature_extraction_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers " "ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler " "og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655") # Use CLS token representation as document embedding document_features = token_wise_features[0][0] print(document_features.shape) # (768,) ``` ## Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.12.1