--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - autotrain base_model: - cnmoro/micro-bertim - adalbertojunior/distilbert-portuguese-cased widget: - source_sentence: 'search_query: i love autotrain' sentences: - O pôr do sol pinta o céu com tons de laranja e vermelho - Joana adora estudar matemática nas tardes de sábado - Os pássaros voam em formação, criando um espetáculo no horizonte pipeline_tag: sentence-similarity datasets: - cnmoro/AllTripletsMsMarco-PTBR license: apache-2.0 language: - pt --- A manually pruned version of [distilbert-portuguese-cased](https://huggingface.co./adalbertojunior/distilbert-portuguese-cased), finetuned to produce high quality embeddings in a lightweight form factor. # Model Trained Using AutoTrain - Problem type: Sentence Transformers ## Validation Metrics loss: 0.3181200921535492 cosine_accuracy: 0.8921948650328134 ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the Hugging Face Hub model = SentenceTransformer("cnmoro/micro-bertim-embeddings") # Run inference sentences = [ 'O pôr do sol pinta o céu com tons de laranja e vermelho', 'Joana adora estudar matemática nas tardes de sábado', 'Os pássaros voam em formação, criando um espetáculo no horizonte', ] embeddings = model.encode(sentences) print(embeddings.shape) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) ```