Text Generation
PEFT
Safetensors
French
English
bloom
Cyrile commited on
Commit
922bdc3
1 Parent(s): b263b63

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: cmarkea/bloomz-3b-dpo-chat
3
+ library_name: peft
4
+ license: apache-2.0
5
+ datasets:
6
+ - cmarkea/table-vqa
7
+ language:
8
+ - fr
9
+ - en
10
+ pipeline_tag: Table Question Answering
11
+ ---
12
+
13
+ ## Model Description
14
+
15
+ **cmarkea/bloomz-3b-dpo-table-qa-latex** is a fine-tuned version of the **[cmarkea/bloomz-3b-dpo-chat](https://huggingface.co/cmarkea/bloomz-3b-dpo-chat)** model, specialized for table-based question answering (QA) tasks. The model has been trained on the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset, which was developed by Crédit Mutuel Arkéa, and it processes tables provided in their LaTeX source format.
16
+
17
+ This model is optimized for multilingual environments, supporting both French and English, and is especially effective in extracting and interpreting tabular data from documents. It has been fine-tuned for 2 days on an A100 40GB GPU and operates in bfloat16 precision to maximize resource efficiency.
18
+
19
+ ### Key Features
20
+ - **Domain:** Table-based question answering (QA), particularly for extracting information from LaTeX-format tables.
21
+ - **Language Support:** French and English, making it suitable for multilingual environments.
22
+ - **Model Type:** Text-to-text language model.
23
+ - **Precision:** bfloat16, optimizing computational efficiency.
24
+ - **Training Duration:** 2 days on A100 40GB GPU.
25
+ - **Fine-Tuning Method:** Full fine-tuning.
26
+
27
+ This model is highly applicable in fields where tabular data needs to be queried and analyzed, such as financial reports, academic papers, and technical documentation.
28
+
29
+ ## Usage
30
+
31
+ Here’s an example of how to use this model for table-based question answering:
32
+
33
+ ```python
34
+ import torch
35
+ from transformers import pipeline
36
+
37
+ device = 0 if torch.cuda.is_available() else -1
38
+ table = '''\begin{tabular}{|c|c|c|}
39
+ \hline
40
+ Model & MAE-{$TKE$}-low & MAE-{$TKE$}-high\\
41
+ \hline
42
+ U-FNET & 0.0048 & $1.09 \times 10^{-5}$\\
43
+ \hline
44
+ \end{tabular}'''
45
+ question = "What is the MAE-TKE-high value for the U-FNET model?"
46
+ prompt = table + '\n' + question
47
+
48
+ model = pipeline("text-generation", "cmarkea/bloomz-3b-dpo-chat", device=device)
49
+ result = model(f"</s>{prompt}<s>", max_new_tokens=512)
50
+ print(result)
51
+ ```
52
+
53
+ The model processes tables written in LaTeX format, so be sure to provide your tables in that form.
54
+
55
+ ## Performance
56
+
57
+ This model was evaluated on 200 question-answer pairs extracted from 100 tables in the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** test set. Each table had two question-answer pairs: one in French and one in English.
58
+
59
+ The evaluation used the **[LLM-as-Juries](https://arxiv.org/abs/2404.18796)** method, employing three judge models (GPT-4o, Gemini1.5 Pro, and Claude 3.5-Sonnet). The scoring was adapted to the table QA context, with a scale from 0 to 5 to ensure precision in assessing the model’s performance.
60
+
61
+ Here’s a visualization of the results:
62
+
63
+ ![constellation](https://i.postimg.cc/t4tjhy6b/constellation-0.png)
64
+
65
+
66
+ ## Citation
67
+
68
+ ```bibtex
69
+ @online{AgDePaligemmaTableQALatex,
70
+ AUTHOR = {Tom Agonnoude, Cyrile Delestre},
71
+ URL = {https://huggingface.co/cmarkea/bloomz-3b-dpo-table-qa-latex},
72
+ YEAR = {2024},
73
+ KEYWORDS = {Table understanding, LaTeX, Multilingual, QA},
74
+ }
75
+ ```