--- base_model: openai/whisper-small datasets: - clt013/malay-speech-3k-rows-dataset_v2 language: - ms library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: Whisper Small FT Malay - CLT013 results: [] --- # Whisper Small FT Malay - CLT013 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Malay Speech 3k dataset. It achieves the following results on the evaluation set: - Loss: 0.6336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1001 | 0.3731 | 100 | 0.8407 | | 0.7305 | 0.7463 | 200 | 0.7879 | | 0.615 | 1.1194 | 300 | 0.7401 | | 0.4364 | 1.4925 | 400 | 0.7126 | | 0.3951 | 1.8657 | 500 | 0.6772 | | 0.2428 | 2.2388 | 600 | 0.6649 | | 0.185 | 2.6119 | 700 | 0.6426 | | 0.1781 | 2.9851 | 800 | 0.6336 | ### Framework versions - PEFT 0.13.1.dev0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1