File size: 1,871 Bytes
d1899b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: openai/whisper-small
datasets:
- clt013/malay-speech-3k-rows-dataset_v2
language:
- ms
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Whisper Small FT Malay - CLT013
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small FT Malay - CLT013
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Malay Speech 3k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6336
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1001 | 0.3731 | 100 | 0.8407 |
| 0.7305 | 0.7463 | 200 | 0.7879 |
| 0.615 | 1.1194 | 300 | 0.7401 |
| 0.4364 | 1.4925 | 400 | 0.7126 |
| 0.3951 | 1.8657 | 500 | 0.6772 |
| 0.2428 | 2.2388 | 600 | 0.6649 |
| 0.185 | 2.6119 | 700 | 0.6426 |
| 0.1781 | 2.9851 | 800 | 0.6336 |
### Framework versions
- PEFT 0.13.1.dev0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1 |