--- license: cc-by-nc-4.0 model-index: - name: mixtral_7bx4_moe results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.27 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.28 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.84 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 59.85 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.66 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.09 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe name: Open LLM Leaderboard --- I don't know why so many downloads about this model. Please share your cases, thanks. Now this model is improved by DPO to [cloudyu/Pluto_24B_DPO_200](https://huggingface.co./cloudyu/Pluto_24B_DPO_200) * Metrics improved by DPO ![Metrsc improment](dpo.jpg) ![Metrsc improment](dpo-metrics.jpg) # Mixtral MOE 4x7B MOE the following models by mergekit: * [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co./Q-bert/MetaMath-Cybertron-Starling) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) * [teknium/Mistral-Trismegistus-7B](https://huggingface.co./teknium/Mistral-Trismegistus-7B) * [meta-math/MetaMath-Mistral-7B](https://huggingface.co./meta-math/MetaMath-Mistral-7B) * [openchat/openchat-3.5-1210](https://huggingface.co./openchat/openchat-3.5-1210) Metrics * Average : 68.85 * ARC:65.36 * HellaSwag:85.23 * more details: https://huggingface.co./datasets/open-llm-leaderboard/results/blob/main/cloudyu/Mixtral_7Bx4_MOE_24B/results_2023-12-23T18-05-51.243288.json gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_7Bx4_MOE_24B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_7Bx4_MOE_24B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_cloudyu__mixtral_7bx4_moe) | Metric |Value| |---------------------------------|----:| |Avg. |68.83| |AI2 Reasoning Challenge (25-Shot)|65.27| |HellaSwag (10-Shot) |85.28| |MMLU (5-Shot) |62.84| |TruthfulQA (0-shot) |59.85| |Winogrande (5-shot) |77.66| |GSM8k (5-shot) |62.09|