File size: 1,343 Bytes
ff4a171 42cda75 ff4a171 d80e0d7 c400a98 d80e0d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
license: cc-by-nc-4.0
---
# Mixtral MOE 4x7B
MOE the following models by mergekit:
* [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co./Q-bert/MetaMath-Cybertron-Starling)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2)
* [teknium/Mistral-Trismegistus-7B](https://huggingface.co./teknium/Mistral-Trismegistus-7B)
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co./meta-math/MetaMath-Mistral-7B)
* [openchat/openchat-3.5-1210](https://huggingface.co./openchat/openchat-3.5-1210)
Works and generates coherent text.
code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
|