File size: 1,343 Bytes
ff4a171
 
 
 
 
 
 
 
42cda75
ff4a171
 
 
 
 
 
 
 
d80e0d7
 
 
 
 
 
 
 
 
c400a98
d80e0d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
  license: cc-by-nc-4.0
---

# Mixtral MOE 4x7B



MOE the following models by mergekit:
* [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co./Q-bert/MetaMath-Cybertron-Starling)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2)
* [teknium/Mistral-Trismegistus-7B](https://huggingface.co./teknium/Mistral-Trismegistus-7B)
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co./meta-math/MetaMath-Mistral-7B)
* [openchat/openchat-3.5-1210](https://huggingface.co./openchat/openchat-3.5-1210)


Works and generates coherent text. 

code example

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")
```