clincolnoz
commited on
Commit
•
c29f1b2
1
Parent(s):
0b25aae
v0.90 state at 90 epochs
Browse files- README.md +44 -44
- optimizer.pt +1 -1
- pytorch_model.bin +1 -1
- rng_state.pth +1 -1
- scaler.pt +1 -1
- scheduler.pt +1 -1
- trainer_state.json +0 -0
README.md
CHANGED
@@ -84,26 +84,26 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
84 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
85 |
>>> unmasker("Hello I'm a [MASK] model.")
|
86 |
|
87 |
-
[{'score': 0.
|
88 |
'token': 3287,
|
89 |
'token_str': 'male',
|
90 |
'sequence': "hello i'm a male model."},
|
91 |
-
{'score': 0.
|
92 |
-
'token': 10516,
|
93 |
-
'token_str': 'fitness',
|
94 |
-
'sequence': "hello i'm a fitness model."},
|
95 |
-
{'score': 0.057892583310604095,
|
96 |
'token': 4827,
|
97 |
'token_str': 'fashion',
|
98 |
'sequence': "hello i'm a fashion model."},
|
99 |
-
{'score': 0.
|
100 |
-
'token':
|
101 |
-
'token_str': '
|
102 |
-
'sequence': "hello i'm a
|
103 |
-
{'score': 0.
|
104 |
'token': 3565,
|
105 |
'token_str': 'super',
|
106 |
-
'sequence': "hello i'm a super model."}
|
|
|
|
|
|
|
|
|
107 |
```
|
108 |
|
109 |
Here is how to use this model to get the features of a given text in PyTorch:
|
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
|
|
112 |
from transformers import BertTokenizer, BertModel
|
113 |
tokenizer = BertTokenizer.from_pretrained(
|
114 |
'clincolnoz/MoreSexistBERT',
|
115 |
-
revision='v0.
|
116 |
)
|
117 |
model = BertModel.from_pretrained(
|
118 |
'clincolnoz/MoreSexistBERT',
|
119 |
-
revision='v0.
|
120 |
)
|
121 |
text = "Replace me by any text you'd like."
|
122 |
encoded_input = tokenizer(text, return_tensors='pt')
|
@@ -129,12 +129,12 @@ and in TensorFlow:
|
|
129 |
from transformers import BertTokenizer, TFBertModel
|
130 |
tokenizer = BertTokenizer.from_pretrained(
|
131 |
'clincolnoz/MoreSexistBERT',
|
132 |
-
revision='v0.
|
133 |
)
|
134 |
model = TFBertModel.from_pretrained(
|
135 |
'clincolnoz/MoreSexistBERT',
|
136 |
from_pt=True,
|
137 |
-
revision='v0.
|
138 |
)
|
139 |
text = "Replace me by any text you'd like."
|
140 |
encoded_input = tokenizer(text, return_tensors='tf')
|
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
|
|
151 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
152 |
>>> unmasker("The man worked as a [MASK].")
|
153 |
|
154 |
-
[{'score': 0.
|
155 |
'token': 10850,
|
156 |
'token_str': 'maid',
|
157 |
'sequence': 'the man worked as a maid.'},
|
158 |
-
{'score': 0.
|
159 |
'token': 2158,
|
160 |
'token_str': 'man',
|
161 |
'sequence': 'the man worked as a man.'},
|
162 |
-
{'score': 0.
|
163 |
-
'token':
|
164 |
-
'token_str': '
|
165 |
-
'sequence': 'the man worked as a
|
166 |
-
{'score': 0.
|
167 |
-
'token':
|
168 |
-
'token_str': '
|
169 |
-
'sequence': 'the man worked as a
|
170 |
-
{'score': 0.
|
171 |
-
'token':
|
172 |
-
'token_str': '
|
173 |
-
'sequence': 'the man worked as a
|
174 |
|
175 |
>>> unmasker("The woman worked as a [MASK].")
|
176 |
|
177 |
-
[{'score': 0.
|
178 |
-
'token': 10850,
|
179 |
-
'token_str': 'maid',
|
180 |
-
'sequence': 'the woman worked as a maid.'},
|
181 |
-
{'score': 0.1508074700832367,
|
182 |
'token': 6821,
|
183 |
'token_str': 'nurse',
|
184 |
'sequence': 'the woman worked as a nurse.'},
|
185 |
-
{'score': 0.
|
186 |
'token': 19215,
|
187 |
'token_str': 'prostitute',
|
188 |
'sequence': 'the woman worked as a prostitute.'},
|
189 |
-
{'score': 0.
|
190 |
-
'token':
|
191 |
-
'token_str': '
|
192 |
-
'sequence': 'the woman worked as a
|
193 |
-
{'score': 0.
|
194 |
-
'token':
|
195 |
-
'token_str': '
|
196 |
-
'sequence': 'the woman worked as a
|
|
|
|
|
|
|
|
|
197 |
```
|
198 |
|
199 |
This bias may also affect all fine-tuned versions of this model.
|
|
|
84 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
85 |
>>> unmasker("Hello I'm a [MASK] model.")
|
86 |
|
87 |
+
[{'score': 0.5416018962860107,
|
88 |
'token': 3287,
|
89 |
'token_str': 'male',
|
90 |
'sequence': "hello i'm a male model."},
|
91 |
+
{'score': 0.15150301158428192,
|
|
|
|
|
|
|
|
|
92 |
'token': 4827,
|
93 |
'token_str': 'fashion',
|
94 |
'sequence': "hello i'm a fashion model."},
|
95 |
+
{'score': 0.10504560172557831,
|
96 |
+
'token': 10516,
|
97 |
+
'token_str': 'fitness',
|
98 |
+
'sequence': "hello i'm a fitness model."},
|
99 |
+
{'score': 0.05473695322871208,
|
100 |
'token': 3565,
|
101 |
'token_str': 'super',
|
102 |
+
'sequence': "hello i'm a super model."},
|
103 |
+
{'score': 0.012124338187277317,
|
104 |
+
'token': 2931,
|
105 |
+
'token_str': 'female',
|
106 |
+
'sequence': "hello i'm a female model."}]
|
107 |
```
|
108 |
|
109 |
Here is how to use this model to get the features of a given text in PyTorch:
|
|
|
112 |
from transformers import BertTokenizer, BertModel
|
113 |
tokenizer = BertTokenizer.from_pretrained(
|
114 |
'clincolnoz/MoreSexistBERT',
|
115 |
+
revision='v0.90' # tag name, or branch name, or commit hash
|
116 |
)
|
117 |
model = BertModel.from_pretrained(
|
118 |
'clincolnoz/MoreSexistBERT',
|
119 |
+
revision='v0.90' # tag name, or branch name, or commit hash
|
120 |
)
|
121 |
text = "Replace me by any text you'd like."
|
122 |
encoded_input = tokenizer(text, return_tensors='pt')
|
|
|
129 |
from transformers import BertTokenizer, TFBertModel
|
130 |
tokenizer = BertTokenizer.from_pretrained(
|
131 |
'clincolnoz/MoreSexistBERT',
|
132 |
+
revision='v0.90' # tag name, or branch name, or commit hash
|
133 |
)
|
134 |
model = TFBertModel.from_pretrained(
|
135 |
'clincolnoz/MoreSexistBERT',
|
136 |
from_pt=True,
|
137 |
+
revision='v0.90' # tag name, or branch name, or commit hash
|
138 |
)
|
139 |
text = "Replace me by any text you'd like."
|
140 |
encoded_input = tokenizer(text, return_tensors='tf')
|
|
|
151 |
>>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
|
152 |
>>> unmasker("The man worked as a [MASK].")
|
153 |
|
154 |
+
[{'score': 0.12056996673345566,
|
155 |
'token': 10850,
|
156 |
'token_str': 'maid',
|
157 |
'sequence': 'the man worked as a maid.'},
|
158 |
+
{'score': 0.08226173371076584,
|
159 |
'token': 2158,
|
160 |
'token_str': 'man',
|
161 |
'sequence': 'the man worked as a man.'},
|
162 |
+
{'score': 0.07381097972393036,
|
163 |
+
'token': 6658,
|
164 |
+
'token_str': 'slave',
|
165 |
+
'sequence': 'the man worked as a slave.'},
|
166 |
+
{'score': 0.056675802916288376,
|
167 |
+
'token': 15893,
|
168 |
+
'token_str': 'mechanic',
|
169 |
+
'sequence': 'the man worked as a mechanic.'},
|
170 |
+
{'score': 0.052879273891448975,
|
171 |
+
'token': 6821,
|
172 |
+
'token_str': 'nurse',
|
173 |
+
'sequence': 'the man worked as a nurse.'}]
|
174 |
|
175 |
>>> unmasker("The woman worked as a [MASK].")
|
176 |
|
177 |
+
[{'score': 0.20025905966758728,
|
|
|
|
|
|
|
|
|
178 |
'token': 6821,
|
179 |
'token_str': 'nurse',
|
180 |
'sequence': 'the woman worked as a nurse.'},
|
181 |
+
{'score': 0.10099201649427414,
|
182 |
'token': 19215,
|
183 |
'token_str': 'prostitute',
|
184 |
'sequence': 'the woman worked as a prostitute.'},
|
185 |
+
{'score': 0.0937679186463356,
|
186 |
+
'token': 20133,
|
187 |
+
'token_str': 'cleaner',
|
188 |
+
'sequence': 'the woman worked as a cleaner.'},
|
189 |
+
{'score': 0.09168527275323868,
|
190 |
+
'token': 10850,
|
191 |
+
'token_str': 'maid',
|
192 |
+
'sequence': 'the woman worked as a maid.'},
|
193 |
+
{'score': 0.0479387566447258,
|
194 |
+
'token': 15893,
|
195 |
+
'token_str': 'mechanic',
|
196 |
+
'sequence': 'the woman worked as a mechanic.'}]
|
197 |
```
|
198 |
|
199 |
This bias may also affect all fine-tuned versions of this model.
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 882547461
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1370bc878e01231228c83f862841944195e432f2d1a8c5f2d2250e0275eefa1
|
3 |
size 882547461
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 441287881
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f575ee0c98efaf9e48e2cbfef6fc121b0f54c551105882c2dfd640642e289306
|
3 |
size 441287881
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14575
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ac3f4a68e3167def92270b6cb263a3e1ec5604cc9c44356cce0e570bd419993
|
3 |
size 14575
|
scaler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 557
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:371677ec2fce313236dc774a1576a05be794ebb3783e1ee0886b1e59e5a1b257
|
3 |
size 557
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 627
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e537498ab0462b05ff2fc0a9b0fd2ada3c0d47d9f4b5ffdcec0707545e0b48c
|
3 |
size 627
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|