clincolnoz commited on
Commit
c29f1b2
1 Parent(s): 0b25aae

v0.90 state at 90 epochs

Browse files
Files changed (7) hide show
  1. README.md +44 -44
  2. optimizer.pt +1 -1
  3. pytorch_model.bin +1 -1
  4. rng_state.pth +1 -1
  5. scaler.pt +1 -1
  6. scheduler.pt +1 -1
  7. trainer_state.json +0 -0
README.md CHANGED
@@ -84,26 +84,26 @@ You can use this model directly with a pipeline for masked language modeling:
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
- [{'score': 0.5821305513381958,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
- {'score': 0.19825346767902374,
92
- 'token': 10516,
93
- 'token_str': 'fitness',
94
- 'sequence': "hello i'm a fitness model."},
95
- {'score': 0.057892583310604095,
96
  'token': 4827,
97
  'token_str': 'fashion',
98
  'sequence': "hello i'm a fashion model."},
99
- {'score': 0.017365537583827972,
100
- 'token': 14236,
101
- 'token_str': 'underwear',
102
- 'sequence': "hello i'm a underwear model."},
103
- {'score': 0.012146800756454468,
104
  'token': 3565,
105
  'token_str': 'super',
106
- 'sequence': "hello i'm a super model."}]
 
 
 
 
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
- revision='v0.80' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
- revision='v0.80' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
@@ -129,12 +129,12 @@ and in TensorFlow:
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
- revision='v0.80' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
- revision='v0.80' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
- [{'score': 0.14042392373085022,
155
  'token': 10850,
156
  'token_str': 'maid',
157
  'sequence': 'the man worked as a maid.'},
158
- {'score': 0.06179763376712799,
159
  'token': 2158,
160
  'token_str': 'man',
161
  'sequence': 'the man worked as a man.'},
162
- {'score': 0.04900544881820679,
163
- 'token': 15812,
164
- 'token_str': 'bartender',
165
- 'sequence': 'the man worked as a bartender.'},
166
- {'score': 0.04787024110555649,
167
- 'token': 2136,
168
- 'token_str': 'team',
169
- 'sequence': 'the man worked as a team.'},
170
- {'score': 0.04161069542169571,
171
- 'token': 3208,
172
- 'token_str': 'manager',
173
- 'sequence': 'the man worked as a manager.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
- [{'score': 0.16774573922157288,
178
- 'token': 10850,
179
- 'token_str': 'maid',
180
- 'sequence': 'the woman worked as a maid.'},
181
- {'score': 0.1508074700832367,
182
  'token': 6821,
183
  'token_str': 'nurse',
184
  'sequence': 'the woman worked as a nurse.'},
185
- {'score': 0.1334776133298874,
186
  'token': 19215,
187
  'token_str': 'prostitute',
188
  'sequence': 'the woman worked as a prostitute.'},
189
- {'score': 0.07549825310707092,
190
- 'token': 3187,
191
- 'token_str': 'secretary',
192
- 'sequence': 'the woman worked as a secretary.'},
193
- {'score': 0.06620538979768753,
194
- 'token': 15812,
195
- 'token_str': 'bartender',
196
- 'sequence': 'the woman worked as a bartender.'}]
 
 
 
 
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
 
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
+ [{'score': 0.5416018962860107,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
+ {'score': 0.15150301158428192,
 
 
 
 
92
  'token': 4827,
93
  'token_str': 'fashion',
94
  'sequence': "hello i'm a fashion model."},
95
+ {'score': 0.10504560172557831,
96
+ 'token': 10516,
97
+ 'token_str': 'fitness',
98
+ 'sequence': "hello i'm a fitness model."},
99
+ {'score': 0.05473695322871208,
100
  'token': 3565,
101
  'token_str': 'super',
102
+ 'sequence': "hello i'm a super model."},
103
+ {'score': 0.012124338187277317,
104
+ 'token': 2931,
105
+ 'token_str': 'female',
106
+ 'sequence': "hello i'm a female model."}]
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
 
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
+ revision='v0.90' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
+ revision='v0.90' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
 
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
+ revision='v0.90' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
+ revision='v0.90' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
 
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
+ [{'score': 0.12056996673345566,
155
  'token': 10850,
156
  'token_str': 'maid',
157
  'sequence': 'the man worked as a maid.'},
158
+ {'score': 0.08226173371076584,
159
  'token': 2158,
160
  'token_str': 'man',
161
  'sequence': 'the man worked as a man.'},
162
+ {'score': 0.07381097972393036,
163
+ 'token': 6658,
164
+ 'token_str': 'slave',
165
+ 'sequence': 'the man worked as a slave.'},
166
+ {'score': 0.056675802916288376,
167
+ 'token': 15893,
168
+ 'token_str': 'mechanic',
169
+ 'sequence': 'the man worked as a mechanic.'},
170
+ {'score': 0.052879273891448975,
171
+ 'token': 6821,
172
+ 'token_str': 'nurse',
173
+ 'sequence': 'the man worked as a nurse.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
+ [{'score': 0.20025905966758728,
 
 
 
 
178
  'token': 6821,
179
  'token_str': 'nurse',
180
  'sequence': 'the woman worked as a nurse.'},
181
+ {'score': 0.10099201649427414,
182
  'token': 19215,
183
  'token_str': 'prostitute',
184
  'sequence': 'the woman worked as a prostitute.'},
185
+ {'score': 0.0937679186463356,
186
+ 'token': 20133,
187
+ 'token_str': 'cleaner',
188
+ 'sequence': 'the woman worked as a cleaner.'},
189
+ {'score': 0.09168527275323868,
190
+ 'token': 10850,
191
+ 'token_str': 'maid',
192
+ 'sequence': 'the woman worked as a maid.'},
193
+ {'score': 0.0479387566447258,
194
+ 'token': 15893,
195
+ 'token_str': 'mechanic',
196
+ 'sequence': 'the woman worked as a mechanic.'}]
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5734312f77dfad52c6486a6d6fd25184e09792c2c4e21288c0e253233c230933
3
  size 882547461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1370bc878e01231228c83f862841944195e432f2d1a8c5f2d2250e0275eefa1
3
  size 882547461
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6b7ccd69f7f751af7375511347c9b5af1d623f4d28ee62969373668517d5ef23
3
  size 441287881
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f575ee0c98efaf9e48e2cbfef6fc121b0f54c551105882c2dfd640642e289306
3
  size 441287881
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3624388591f3bfb5f46c06098bcd321c7c61ccf68b3a7ac1648d6e3776ace91b
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ac3f4a68e3167def92270b6cb263a3e1ec5604cc9c44356cce0e570bd419993
3
  size 14575
scaler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b259ddf590506cfa13a38e343c39b40500c249e1cd298b2df48be108412eef4f
3
  size 557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:371677ec2fce313236dc774a1576a05be794ebb3783e1ee0886b1e59e5a1b257
3
  size 557
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf88e45453b7e8e356bf042b35a0b6bf7836f0eac801688ff9be1bdf176e6228
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e537498ab0462b05ff2fc0a9b0fd2ada3c0d47d9f4b5ffdcec0707545e0b48c
3
  size 627
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff