clincolnoz commited on
Commit
53198c5
1 Parent(s): feb84c3

epoch 91 of 100

Browse files
Files changed (7) hide show
  1. README.md +38 -38
  2. optimizer.pt +1 -1
  3. pytorch_model.bin +1 -1
  4. rng_state.pth +1 -1
  5. scaler.pt +1 -1
  6. scheduler.pt +1 -1
  7. trainer_state.json +0 -0
README.md CHANGED
@@ -84,23 +84,23 @@ You can use this model directly with a pipeline for masked language modeling:
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
- [{'score': 0.4885989725589752,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
- {'score': 0.07768598198890686,
92
  'token': 10516,
93
  'token_str': 'fitness',
94
  'sequence': "hello i'm a fitness model."},
95
- {'score': 0.07020057737827301,
96
- 'token': 7605,
97
- 'token_str': '3d',
98
- 'sequence': "hello i'm a 3d model."},
99
- {'score': 0.02921755239367485,
100
  'token': 2931,
101
  'token_str': 'female',
102
  'sequence': "hello i'm a female model."},
103
- {'score': 0.024456918239593506,
 
 
 
 
104
  'token': 2402,
105
  'token_str': 'young',
106
  'sequence': "hello i'm a young model."}]
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/LessSexistBERT',
115
- revision='v0.80' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/LessSexistBERT',
119
- revision='v0.80' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
@@ -129,12 +129,12 @@ and in TensorFlow:
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/LessSexistBERT',
132
- revision='v0.80' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/LessSexistBERT',
136
  from_pt=True,
137
- revision='v0.80' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
- [{'score': 0.12311512976884842,
155
  'token': 7155,
156
  'token_str': 'scientist',
157
  'sequence': 'the man worked as a scientist.'},
158
- {'score': 0.06882568448781967,
 
 
 
 
159
  'token': 15893,
160
  'token_str': 'mechanic',
161
  'sequence': 'the man worked as a mechanic.'},
162
- {'score': 0.048407185822725296,
163
- 'token': 3460,
164
- 'token_str': 'doctor',
165
- 'sequence': 'the man worked as a doctor.'},
166
- {'score': 0.04122833535075188,
167
- 'token': 8872,
168
- 'token_str': 'cop',
169
- 'sequence': 'the man worked as a cop.'},
170
- {'score': 0.034789860248565674,
171
  'token': 19294,
172
  'token_str': 'therapist',
173
- 'sequence': 'the man worked as a therapist.'}]
 
 
 
 
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
- [{'score': 0.503332793712616,
178
  'token': 6821,
179
  'token_str': 'nurse',
180
  'sequence': 'the woman worked as a nurse.'},
181
- {'score': 0.10061146318912506,
182
- 'token': 23775,
183
- 'token_str': 'receptionist',
184
- 'sequence': 'the woman worked as a receptionist.'},
185
- {'score': 0.043093226850032806,
186
- 'token': 15812,
187
- 'token_str': 'bartender',
188
- 'sequence': 'the woman worked as a bartender.'},
189
- {'score': 0.03342611715197563,
190
  'token': 3836,
191
  'token_str': 'teacher',
192
  'sequence': 'the woman worked as a teacher.'},
193
- {'score': 0.023091496899724007,
194
- 'token': 3208,
195
- 'token_str': 'manager',
196
- 'sequence': 'the woman worked as a manager.'}]
 
 
 
 
 
 
 
 
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
 
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
+ [{'score': 0.6694316267967224,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
+ {'score': 0.07414254546165466,
92
  'token': 10516,
93
  'token_str': 'fitness',
94
  'sequence': "hello i'm a fitness model."},
95
+ {'score': 0.039137206971645355,
 
 
 
 
96
  'token': 2931,
97
  'token_str': 'female',
98
  'sequence': "hello i'm a female model."},
99
+ {'score': 0.015867002308368683,
100
+ 'token': 3565,
101
+ 'token_str': 'super',
102
+ 'sequence': "hello i'm a super model."},
103
+ {'score': 0.013910580426454544,
104
  'token': 2402,
105
  'token_str': 'young',
106
  'sequence': "hello i'm a young model."}]
 
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/LessSexistBERT',
115
+ revision='v0.91' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/LessSexistBERT',
119
+ revision='v0.91' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
 
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/LessSexistBERT',
132
+ revision='v0.91' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/LessSexistBERT',
136
  from_pt=True,
137
+ revision='v0.91' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
 
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
+ [{'score': 0.1168212816119194,
155
  'token': 7155,
156
  'token_str': 'scientist',
157
  'sequence': 'the man worked as a scientist.'},
158
+ {'score': 0.11011917889118195,
159
+ 'token': 3836,
160
+ 'token_str': 'teacher',
161
+ 'sequence': 'the man worked as a teacher.'},
162
+ {'score': 0.09386853873729706,
163
  'token': 15893,
164
  'token_str': 'mechanic',
165
  'sequence': 'the man worked as a mechanic.'},
166
+ {'score': 0.05859819054603577,
 
 
 
 
 
 
 
 
167
  'token': 19294,
168
  'token_str': 'therapist',
169
+ 'sequence': 'the man worked as a therapist.'},
170
+ {'score': 0.04985320568084717,
171
+ 'token': 3460,
172
+ 'token_str': 'doctor',
173
+ 'sequence': 'the man worked as a doctor.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
+ [{'score': 0.16592034697532654,
178
  'token': 6821,
179
  'token_str': 'nurse',
180
  'sequence': 'the woman worked as a nurse.'},
181
+ {'score': 0.1295347660779953,
 
 
 
 
 
 
 
 
182
  'token': 3836,
183
  'token_str': 'teacher',
184
  'sequence': 'the woman worked as a teacher.'},
185
+ {'score': 0.12351243197917938,
186
+ 'token': 15812,
187
+ 'token_str': 'bartender',
188
+ 'sequence': 'the woman worked as a bartender.'},
189
+ {'score': 0.0773676186800003,
190
+ 'token': 15610,
191
+ 'token_str': 'waiter',
192
+ 'sequence': 'the woman worked as a waiter.'},
193
+ {'score': 0.05898765102028847,
194
+ 'token': 19294,
195
+ 'token_str': 'therapist',
196
+ 'sequence': 'the woman worked as a therapist.'}]
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:34619827623abd91a4ae2278923ebaa4a06f306d50b3467e60d25a5a82da9c52
3
  size 881735429
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c5f98fb19784adada7a9ef8a1d66ed8e7715c3eb3bc4ee1c45d15e33a01f00
3
  size 881735429
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc1c7462fea587f8d4ac26afc8fd2cccbc0389fb1253af10e23f1fe7bb8821b3
3
  size 440881865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2062c3056310d75caee48a33a1de187bc604641b10137bb851006b87d63e3ce4
3
  size 440881865
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:461d0d5f2d47907c7bef90275caf61c7744ca83c4173bc3fddfd6b0b8eba5e85
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f806318b27c20828409f0dccd94ad9b71022c89b751e20c4f4f36d806af5efa0
3
  size 14575
scaler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e2d2627e22c7301ffaf94ab7e1d81cb6eb4de9dbb4748cf66d613938648d2c0c
3
  size 557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4a79fbab6f2b22f7975c65cd0526f1901dab93d703d1a305e962b1611ff9571
3
  size 557
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d1c6aca0e78a9db8cfe3f1ea347dd01bae54143b790304db3db9c3eabf3b054
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b19b6538885f59e299ff3ddd6aaeed9e3ef93d51f3b3d4efc4418fb1f1fd847
3
  size 627
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff