clincolnoz
commited on
Commit
•
161bdef
1
Parent(s):
d8fd722
epoch 40 of 100
Browse files- README.md +67 -67
- config.json +1 -1
- optimizer.pt +1 -1
- pytorch_model.bin +1 -1
- rng_state.pth +1 -1
- scaler.pt +1 -1
- scheduler.pt +1 -1
- trainer_state.json +0 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -20,15 +20,15 @@ widget:
|
|
20 |
|
21 |
**WARNING: Some language produced by this model and README may offend. The model intent is to facilitate bias in AI research**
|
22 |
|
23 |
-
#
|
24 |
|
25 |
Re-pretrained model on English language using a Masked Language Modeling (MLM)
|
26 |
and Next Sentence Prediction (NSP) objective. It will be introduced in an upcoming
|
27 |
-
paper and first released on [HuggingFace](https://huggingface.co/clincolnoz/
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
-
|
32 |
self-supervised fashion. This means it was pretrained on the raw texts only,
|
33 |
with no humans labeling them in any way (which is why it can use lots of
|
34 |
publicly available data) with an automatic process to generate inputs and labels
|
@@ -53,16 +53,16 @@ using the features produced by the BERT model as inputs.
|
|
53 |
|
54 |
## Model variations
|
55 |
|
56 |
-
|
57 |
|
58 |
| Model | #params | Language |
|
59 |
| ----------------------------------------------------------------------- | --------- | -------- |
|
60 |
-
| [`sexistBERT`](https://huggingface.co/clincolnoz/
|
61 |
-
| [`notSexistBERT`](https://huggingface.co/clincolnoz/
|
62 |
|
63 |
## Intended uses & limitations
|
64 |
|
65 |
-
Apart from the usual uses for BERT below, the intended usage of these model is to test bias detection methods and the effect of bias on downstream tasks.
|
66 |
|
67 |
You can use the raw model for either masked language modeling or next sentence
|
68 |
prediction, but it's mostly intended to be fine-tuned on a downstream task. See
|
@@ -81,29 +81,29 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
81 |
|
82 |
```python
|
83 |
>>> from transformers import pipeline
|
84 |
-
>>> unmasker = pipeline('fill-mask', model='clincolnoz/
|
85 |
>>> unmasker("Hello I'm a [MASK] model.")
|
86 |
|
87 |
-
[{'score': 0.
|
|
|
|
|
|
|
|
|
88 |
'token': 2535,
|
89 |
'token_str': 'role',
|
90 |
'sequence': "hello i'm a role model."},
|
91 |
-
{'score': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
'token': 2449,
|
93 |
'token_str': 'business',
|
94 |
-
'sequence': "hello i'm a business model."}
|
95 |
-
{'score': 0.0621086061000824,
|
96 |
-
'token': 3287,
|
97 |
-
'token_str': 'male',
|
98 |
-
'sequence': "hello i'm a male model."},
|
99 |
-
{'score': 0.03042026236653328,
|
100 |
-
'token': 3565,
|
101 |
-
'token_str': 'super',
|
102 |
-
'sequence': "hello i'm a super model."},
|
103 |
-
{'score': 0.01949389837682247,
|
104 |
-
'token': 7605,
|
105 |
-
'token_str': '3d',
|
106 |
-
'sequence': "hello i'm a 3d model."}]
|
107 |
```
|
108 |
|
109 |
Here is how to use this model to get the features of a given text in PyTorch:
|
@@ -111,12 +111,12 @@ Here is how to use this model to get the features of a given text in PyTorch:
|
|
111 |
```python
|
112 |
from transformers import BertTokenizer, BertModel
|
113 |
tokenizer = BertTokenizer.from_pretrained(
|
114 |
-
'clincolnoz/
|
115 |
-
revision='v0.
|
116 |
)
|
117 |
model = BertModel.from_pretrained(
|
118 |
-
'clincolnoz/
|
119 |
-
revision='v0.
|
120 |
)
|
121 |
text = "Replace me by any text you'd like."
|
122 |
encoded_input = tokenizer(text, return_tensors='pt')
|
@@ -128,13 +128,13 @@ and in TensorFlow:
|
|
128 |
```python
|
129 |
from transformers import BertTokenizer, TFBertModel
|
130 |
tokenizer = BertTokenizer.from_pretrained(
|
131 |
-
'clincolnoz/
|
132 |
-
revision='v0.
|
133 |
)
|
134 |
model = TFBertModel.from_pretrained(
|
135 |
-
'clincolnoz/
|
136 |
from_pt=True,
|
137 |
-
revision='v0.
|
138 |
)
|
139 |
text = "Replace me by any text you'd like."
|
140 |
encoded_input = tokenizer(text, return_tensors='tf')
|
@@ -148,52 +148,52 @@ neutral, this model can have biased predictions:
|
|
148 |
|
149 |
```python
|
150 |
>>> from transformers import pipeline
|
151 |
-
>>> unmasker = pipeline('fill-mask', model='clincolnoz/
|
152 |
>>> unmasker("The man worked as a [MASK].")
|
153 |
|
154 |
-
[{'score': 0.
|
155 |
-
'token':
|
156 |
-
'token_str': '
|
157 |
-
'sequence': 'the man worked as a
|
158 |
-
{'score': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
'token': 7155,
|
160 |
'token_str': 'scientist',
|
161 |
-
'sequence': 'the man worked as a scientist.'}
|
162 |
-
{'score': 0.046040475368499756,
|
163 |
-
'token': 10563,
|
164 |
-
'token_str': 'teenager',
|
165 |
-
'sequence': 'the man worked as a teenager.'},
|
166 |
-
{'score': 0.04330913722515106,
|
167 |
-
'token': 20273,
|
168 |
-
'token_str': 'programmer',
|
169 |
-
'sequence': 'the man worked as a programmer.'},
|
170 |
-
{'score': 0.04167287424206734,
|
171 |
-
'token': 5766,
|
172 |
-
'token_str': 'ceo',
|
173 |
-
'sequence': 'the man worked as a ceo.'}]
|
174 |
|
175 |
>>> unmasker("The woman worked as a [MASK].")
|
176 |
|
177 |
-
[{'score': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
'token': 6821,
|
179 |
'token_str': 'nurse',
|
180 |
'sequence': 'the woman worked as a nurse.'},
|
181 |
-
{'score': 0.
|
182 |
-
'token':
|
183 |
-
'token_str': '
|
184 |
-
'sequence': 'the woman worked as a
|
185 |
-
{'score': 0.07672832906246185,
|
186 |
-
'token': 5160,
|
187 |
-
'token_str': 'lawyer',
|
188 |
-
'sequence': 'the woman worked as a lawyer.'},
|
189 |
-
{'score': 0.042527567595243454,
|
190 |
-
'token': 7522,
|
191 |
-
'token_str': 'physician',
|
192 |
-
'sequence': 'the woman worked as a physician.'},
|
193 |
-
{'score': 0.034959811717271805,
|
194 |
-
'token': 5766,
|
195 |
-
'token_str': 'ceo',
|
196 |
-
'sequence': 'the woman worked as a ceo.'}]
|
197 |
```
|
198 |
|
199 |
This bias may also affect all fine-tuned versions of this model.
|
|
|
20 |
|
21 |
**WARNING: Some language produced by this model and README may offend. The model intent is to facilitate bias in AI research**
|
22 |
|
23 |
+
# LessSexistBERT base model (uncased)
|
24 |
|
25 |
Re-pretrained model on English language using a Masked Language Modeling (MLM)
|
26 |
and Next Sentence Prediction (NSP) objective. It will be introduced in an upcoming
|
27 |
+
paper and first released on [HuggingFace](https://huggingface.co/clincolnoz/LessSexistBERT). This model is uncased: it does not make a difference between english and English.
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
+
LessSexistBERT is a transformers model pretrained on a **less sexist** corpus of English data in a
|
32 |
self-supervised fashion. This means it was pretrained on the raw texts only,
|
33 |
with no humans labeling them in any way (which is why it can use lots of
|
34 |
publicly available data) with an automatic process to generate inputs and labels
|
|
|
53 |
|
54 |
## Model variations
|
55 |
|
56 |
+
LessSexistBERT has originally been released as sexist and notSexist variations. The uncased models strip out any accent markers.
|
57 |
|
58 |
| Model | #params | Language |
|
59 |
| ----------------------------------------------------------------------- | --------- | -------- |
|
60 |
+
| [`sexistBERT`](https://huggingface.co/clincolnoz/MoreSexistBERT) | 110303292 | English |
|
61 |
+
| [`notSexistBERT`](https://huggingface.co/clincolnoz/LessSexistBERT) | 110201784 | English |
|
62 |
|
63 |
## Intended uses & limitations
|
64 |
|
65 |
+
Apart from the usual uses for BERT below, the intended usage of these model is to test bias detection methods and the effect of bias on downstream tasks. MoreSexistBERT is intended to be more biased than LessSexistBERT, however that is yet to be determined.
|
66 |
|
67 |
You can use the raw model for either masked language modeling or next sentence
|
68 |
prediction, but it's mostly intended to be fine-tuned on a downstream task. See
|
|
|
81 |
|
82 |
```python
|
83 |
>>> from transformers import pipeline
|
84 |
+
>>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
|
85 |
>>> unmasker("Hello I'm a [MASK] model.")
|
86 |
|
87 |
+
[{'score': 0.4557390809059143,
|
88 |
+
'token': 3287,
|
89 |
+
'token_str': 'male',
|
90 |
+
'sequence': "hello i'm a male model."},
|
91 |
+
{'score': 0.10188482701778412,
|
92 |
'token': 2535,
|
93 |
'token_str': 'role',
|
94 |
'sequence': "hello i'm a role model."},
|
95 |
+
{'score': 0.051661089062690735,
|
96 |
+
'token': 4827,
|
97 |
+
'token_str': 'fashion',
|
98 |
+
'sequence': "hello i'm a fashion model."},
|
99 |
+
{'score': 0.03352942317724228,
|
100 |
+
'token': 18204,
|
101 |
+
'token_str': 'literal',
|
102 |
+
'sequence': "hello i'm a literal model."},
|
103 |
+
{'score': 0.030233129858970642,
|
104 |
'token': 2449,
|
105 |
'token_str': 'business',
|
106 |
+
'sequence': "hello i'm a business model."}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
```
|
108 |
|
109 |
Here is how to use this model to get the features of a given text in PyTorch:
|
|
|
111 |
```python
|
112 |
from transformers import BertTokenizer, BertModel
|
113 |
tokenizer = BertTokenizer.from_pretrained(
|
114 |
+
'clincolnoz/LessSexistBERT',
|
115 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
116 |
)
|
117 |
model = BertModel.from_pretrained(
|
118 |
+
'clincolnoz/LessSexistBERT',
|
119 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
120 |
)
|
121 |
text = "Replace me by any text you'd like."
|
122 |
encoded_input = tokenizer(text, return_tensors='pt')
|
|
|
128 |
```python
|
129 |
from transformers import BertTokenizer, TFBertModel
|
130 |
tokenizer = BertTokenizer.from_pretrained(
|
131 |
+
'clincolnoz/LessSexistBERT',
|
132 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
133 |
)
|
134 |
model = TFBertModel.from_pretrained(
|
135 |
+
'clincolnoz/LessSexistBERT',
|
136 |
from_pt=True,
|
137 |
+
revision='v0.40' # tag name, or branch name, or commit hash
|
138 |
)
|
139 |
text = "Replace me by any text you'd like."
|
140 |
encoded_input = tokenizer(text, return_tensors='tf')
|
|
|
148 |
|
149 |
```python
|
150 |
>>> from transformers import pipeline
|
151 |
+
>>> unmasker = pipeline('fill-mask', model='clincolnoz/LessSexistBERT')
|
152 |
>>> unmasker("The man worked as a [MASK].")
|
153 |
|
154 |
+
[{'score': 0.498240202665329,
|
155 |
+
'token': 8872,
|
156 |
+
'token_str': 'cop',
|
157 |
+
'sequence': 'the man worked as a cop.'},
|
158 |
+
{'score': 0.07540689408779144,
|
159 |
+
'token': 15812,
|
160 |
+
'token_str': 'bartender',
|
161 |
+
'sequence': 'the man worked as a bartender.'},
|
162 |
+
{'score': 0.031155399978160858,
|
163 |
+
'token': 17907,
|
164 |
+
'token_str': 'accountant',
|
165 |
+
'sequence': 'the man worked as a accountant.'},
|
166 |
+
{'score': 0.017916174605488777,
|
167 |
+
'token': 6821,
|
168 |
+
'token_str': 'nurse',
|
169 |
+
'sequence': 'the man worked as a nurse.'},
|
170 |
+
{'score': 0.015161702409386635,
|
171 |
'token': 7155,
|
172 |
'token_str': 'scientist',
|
173 |
+
'sequence': 'the man worked as a scientist.'}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
>>> unmasker("The woman worked as a [MASK].")
|
176 |
|
177 |
+
[{'score': 0.2861696481704712,
|
178 |
+
'token': 8872,
|
179 |
+
'token_str': 'cop',
|
180 |
+
'sequence': 'the woman worked as a cop.'},
|
181 |
+
{'score': 0.20763547718524933,
|
182 |
+
'token': 15812,
|
183 |
+
'token_str': 'bartender',
|
184 |
+
'sequence': 'the woman worked as a bartender.'},
|
185 |
+
{'score': 0.09263389557600021,
|
186 |
+
'token': 15610,
|
187 |
+
'token_str': 'waiter',
|
188 |
+
'sequence': 'the woman worked as a waiter.'},
|
189 |
+
{'score': 0.05527710169553757,
|
190 |
'token': 6821,
|
191 |
'token_str': 'nurse',
|
192 |
'sequence': 'the woman worked as a nurse.'},
|
193 |
+
{'score': 0.0525786392390728,
|
194 |
+
'token': 3353,
|
195 |
+
'token_str': 'assistant',
|
196 |
+
'sequence': 'the woman worked as a assistant.'}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
```
|
198 |
|
199 |
This bias may also affect all fine-tuned versions of this model.
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertForPreTraining"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/data/cl/notSexistBERT/checkpoint-7871877/",
|
3 |
"architectures": [
|
4 |
"BertForPreTraining"
|
5 |
],
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 881735429
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f894ca6da2dd8f891a3297a8743baa1afa9d45036a92dd405c70f01f5da8a5e0
|
3 |
size 881735429
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 440881865
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fdcb834e1af55bdf59b05eba508a0483254377aaafeeff7023c50f43f2aacc0
|
3 |
size 440881865
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14575
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed6a0029ec1778333f97ab2acb8cdd9cf0c47125a9aa99164f25604ba4df502d
|
3 |
size 14575
|
scaler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 557
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d57f3b9d531afdda4dabb7ed0be6f19768996a9658b591241cdcf5ccacd40f38
|
3 |
size 557
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 627
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:365b0fe5e8f1e15692ec22a488e73e87d7700434fe9540e7a2d5cb07d7c35ae7
|
3 |
size 627
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3515
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cfc6b60d9b6d24dbaf9d97d9365ac2ddaf991ef1860605a7cfa32d631957c38
|
3 |
size 3515
|