File size: 4,362 Bytes
887c4ac
 
 
 
 
 
9256fc7
887c4ac
8fa6cc5
887c4ac
 
 
 
 
 
8fa6cc5
887c4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
base_model: clincolnoz/LessSexistBERT
model-index:
- name: final-lr2e-5-bs16-fp16-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# final-lr2e-5-bs16-fp16-2

This model is a fine-tuned version of [clincolnoz/LessSexistBERT](https://huggingface.co./clincolnoz/LessSexistBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3458
- F1 Macro: 0.8374
- F1 Weighted: 0.8806
- F1: 0.7535
- Accuracy: 0.8808
- Confusion Matrix: [[2794  236]
 [ 241  729]]
- Confusion Matrix Norm: [[0.92211221 0.07788779]
 [0.24845361 0.75154639]]
- Classification Report:               precision    recall  f1-score     support
0              0.920593  0.922112  0.921352  3030.00000
1              0.755440  0.751546  0.753488   970.00000
accuracy       0.880750  0.880750  0.880750     0.88075
macro avg      0.838017  0.836829  0.837420  4000.00000
weighted avg   0.880544  0.880750  0.880645  4000.00000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1     | Accuracy | Confusion Matrix           | Confusion Matrix Norm                              | Classification Report                                                                                                                                                                                                                                                                                                                           |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 0.3253        | 1.0   | 1000 | 0.3011          | 0.8256   | 0.8748      | 0.7301 | 0.878    | [[2852  178]
 [ 310  660]] | [[0.94125413 0.05874587]
 [0.31958763 0.68041237]] |               precision    recall  f1-score   support
0              0.901961  0.941254  0.921189  3030.000
1              0.787589  0.680412  0.730088   970.000
accuracy       0.878000  0.878000  0.878000     0.878
macro avg      0.844775  0.810833  0.825639  4000.000
weighted avg   0.874226  0.878000  0.874847  4000.000             |
| 0.2439        | 2.0   | 2000 | 0.3122          | 0.8411   | 0.8848      | 0.7562 | 0.8865   | [[2842  188]
 [ 266  704]] | [[0.9379538 0.0620462]
 [0.2742268 0.7257732]]     |               precision    recall  f1-score    support
0              0.914414  0.937954  0.926035  3030.0000
1              0.789238  0.725773  0.756176   970.0000
accuracy       0.886500  0.886500  0.886500     0.8865
macro avg      0.851826  0.831863  0.841105  4000.0000
weighted avg   0.884059  0.886500  0.884844  4000.0000       |
| 0.1962        | 3.0   | 3000 | 0.3458          | 0.8374   | 0.8806      | 0.7535 | 0.8808   | [[2794  236]
 [ 241  729]] | [[0.92211221 0.07788779]
 [0.24845361 0.75154639]] |               precision    recall  f1-score     support
0              0.920593  0.922112  0.921352  3030.00000
1              0.755440  0.751546  0.753488   970.00000
accuracy       0.880750  0.880750  0.880750     0.88075
macro avg      0.838017  0.836829  0.837420  4000.00000
weighted avg   0.880544  0.880750  0.880645  4000.00000 |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2