--- language: hr datasets: - parlaspeech-hr tags: - audio - automatic-speech-recognition - parlaspeech widget: - example_title: example 1 src: https://huggingface.co./classla/wav2vec2-xls-r-parlaspeech-hr-lm/raw/main/1800.m4a - example_title: example 2 src: https://huggingface.co./classla/wav2vec2-xls-r-parlaspeech-hr-lm/raw/main/00020578b.flac.wav - example_title: example 3 src: https://huggingface.co./classla/wav2vec2-xls-r-parlaspeech-hr-lm/raw/main/00020570a.flac.wav --- # wav2vec2-xls-r-parlaspeech-hr-lm This model for Croatian ASR is based on the [facebook/wav2vec2-xls-r-300m model](https://huggingface.co./facebook/wav2vec2-xls-r-300m) and was fine-tuned with 300 hours of recordings and transcripts from the ASR Croatian parliament dataset [ParlaSpeech-HR v1.0](http://hdl.handle.net/11356/1494). If you use this model, please cite the following paper: Nikola Ljubešić, Danijel Koržinek, Peter Rupnik, Ivo-Pavao Jazbec. ParlaSpeech-HR -- a freely available ASR dataset for Croatian bootstrapped from the ParlaMint corpus. Accepted at ParlaCLARIN@LREC. ## Metrics Evaluation is performed on the dev and test portions of the [ParlaSpeech-HR v1.0](http://hdl.handle.net/11356/1494) dataset. |split|CER|WER| |---|---|---| |dev|0.0448|0.1129| |test|0.0363|0.0985| ## Usage in `transformers` Tested with `transformers==4.18.0`, `torch==1.11.0`, and `SoundFile==0.10.3.post1`. ```python from transformers import Wav2Vec2ProcessorWithLM, Wav2Vec2ForCTC import soundfile as sf import torch import os device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load model and tokenizer processor = Wav2Vec2ProcessorWithLM.from_pretrained( "classla/wav2vec2-xls-r-parlaspeech-hr-lm") model = Wav2Vec2ForCTC.from_pretrained("classla/wav2vec2-xls-r-parlaspeech-hr-lm") # download the example wav files: os.system("wget https://huggingface.co./classla/wav2vec2-large-slavic-parlaspeech-hr/raw/main/00020570a.flac.wav") # read the wav file speech, sample_rate = sf.read("00020570a.flac.wav") input_values = processor(speech, sampling_rate=sample_rate, return_tensors="pt").input_values.cuda() inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits transcription = processor.batch_decode(logits.numpy()).text[0] # remove the raw wav file os.system("rm 00020570a.flac.wav") transcription # transcription: 'velik broj poslovnih subjekata posluje sa minusom velik dio' ``` ## Training hyperparameters In fine-tuning, the following arguments were used: | arg | value | |-------------------------------|-------| | `per_device_train_batch_size` | 16 | | `gradient_accumulation_steps` | 4 | | `num_train_epochs` | 8 | | `learning_rate` | 3e-4 | | `warmup_steps` | 500 |