Update README.md
Browse files
README.md
CHANGED
@@ -1,125 +1,62 @@
|
|
1 |
---
|
2 |
-
|
3 |
tags:
|
4 |
-
-
|
5 |
-
-
|
6 |
-
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
|
|
|
|
13 |
|
14 |
-
<!--- Describe your model here -->
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
pip install -U sentence-transformers
|
22 |
-
```
|
23 |
-
|
24 |
-
Then you can use the model like this:
|
25 |
-
|
26 |
-
```python
|
27 |
-
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
-
|
30 |
-
model = SentenceTransformer('claritylab/zero-shot-vanilla-bi-encoder')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
-
```
|
34 |
|
35 |
|
|
|
36 |
|
37 |
-
|
38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
|
40 |
```python
|
41 |
-
from
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
model_output = model(**encoded_input)
|
65 |
-
|
66 |
-
# Perform pooling. In this case, mean pooling.
|
67 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
-
|
69 |
-
print("Sentence embeddings:")
|
70 |
-
print(sentence_embeddings)
|
71 |
```
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
## Evaluation Results
|
76 |
-
|
77 |
-
<!--- Describe how your model was evaluated -->
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=claritylab/zero-shot-vanilla-bi-encoder)
|
80 |
-
|
81 |
-
|
82 |
-
## Training
|
83 |
-
The model was trained with the parameters:
|
84 |
-
|
85 |
-
**DataLoader**:
|
86 |
-
|
87 |
-
`torch.utils.data.dataloader.DataLoader` of length 24328 with parameters:
|
88 |
-
```
|
89 |
-
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
-
```
|
91 |
-
|
92 |
-
**Loss**:
|
93 |
-
|
94 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
95 |
-
|
96 |
-
Parameters of the fit()-Method:
|
97 |
-
```
|
98 |
-
{
|
99 |
-
"epochs": 3,
|
100 |
-
"evaluation_steps": 100000,
|
101 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
102 |
-
"max_grad_norm": 1,
|
103 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
104 |
-
"optimizer_params": {
|
105 |
-
"lr": 2e-05
|
106 |
-
},
|
107 |
-
"scheduler": "WarmupLinear",
|
108 |
-
"steps_per_epoch": null,
|
109 |
-
"warmup_steps": 7299,
|
110 |
-
"weight_decay": 0.01
|
111 |
-
}
|
112 |
-
```
|
113 |
-
|
114 |
-
|
115 |
-
## Full Model Architecture
|
116 |
-
```
|
117 |
-
SentenceTransformer(
|
118 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
119 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
120 |
-
)
|
121 |
-
```
|
122 |
-
|
123 |
-
## Citing & Authors
|
124 |
-
|
125 |
-
<!--- Describe where people can find more information -->
|
|
|
1 |
---
|
2 |
+
library_name: zeroshot_classifier
|
3 |
tags:
|
4 |
+
- transformers
|
5 |
+
- sentence-transformers
|
6 |
+
- zeroshot_classifier
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- claritylab/UTCD
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
pipeline_tag: zero-shot-classification
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
---
|
16 |
|
17 |
+
# Zero-shot Vanilla Bi-Encoder
|
18 |
|
19 |
+
This is a [sentence-transformers](https://www.SBERT.net) model.
|
20 |
+
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***.
|
21 |
+
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
|
22 |
|
|
|
23 |
|
24 |
+
## Model description
|
25 |
|
26 |
+
This model was trained via the dual encoding classification framework.
|
27 |
+
It is intended for zero-shot text classification.
|
28 |
+
It was trained as a baseline with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset.
|
29 |
|
30 |
+
- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
+
## Usage
|
34 |
|
35 |
+
You can use the model like this:
|
|
|
36 |
|
37 |
```python
|
38 |
+
>>> from sentence_transformers import SentenceTransformer, util as sbert_util
|
39 |
+
>>> model = SentenceTransformer(model_name_or_path='claritylab/zero-shot-vanilla-bi-encoder')
|
40 |
+
|
41 |
+
>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
|
42 |
+
>>> labels = [
|
43 |
+
>>> 'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
|
44 |
+
>>> 'Search Screening Event'
|
45 |
+
>>> ]
|
46 |
+
|
47 |
+
>>> text_embed = model.encode(text)
|
48 |
+
>>> label_embeds = model.encode(labels)
|
49 |
+
>>> scores = [sbert_util.cos_sim(text_embed, lb_embed).item() for lb_embed in label_embeds]
|
50 |
+
>>> print(scores)
|
51 |
+
|
52 |
+
[
|
53 |
+
0.7219685912132263,
|
54 |
+
-0.011121425777673721,
|
55 |
+
0.04929959028959274,
|
56 |
+
0.6653788089752197,
|
57 |
+
0.07093366980552673,
|
58 |
+
0.2897151708602905,
|
59 |
+
0.06133288890123367
|
60 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
```
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|