File size: 2,074 Bytes
ed74ee7
120d81d
d014508
fe1d8d6
 
 
 
 
 
 
 
 
120d81d
 
ed74ee7
 
d014508
ed74ee7
f26d091
d014508
 
ed74ee7
 
 
f26d091
44d4d3d
ed74ee7
d014508
ed74ee7
 
d014508
ed74ee7
64db734
 
 
 
 
 
ed74ee7
d014508
 
 
ed74ee7
d014508
 
 
 
 
963bbd5
1455fcd
 
6a82144
733b37c
d014508
 
ed74ee7
44f1a90
 
 
 
 
 
 
d014508
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: zeroshot_classifier
tags:
  - transformers
  - sentence-transformers
  - zeroshot_classifier
license: mit
datasets:
  - claritylab/UTCD
language:
  - en
pipeline_tag: zero-shot-classification
metrics:
  - accuracy
---

# Zero-shot Implicit Binary BERT 

This is a BERT model. 
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***. 
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master). 

## Model description

This model is intended for zero-shot text classification. 
It was trained under the binary classification framework via implicit training with the aspect-normalized [UTCD](https://huggingface.co./datasets/claritylab/UTCD) dataset. 

- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co./bert-base-uncased)


## Usage

Install our [python package](https://pypi.org/project/zeroshot-classifier/): 
```bash
pip install zeroshot-classifier
```

Then, you can use the model like this:

```python
>>> from zeroshot_classifier.models import BinaryBertCrossEncoder
>>> model = BinaryBertCrossEncoder(model_name='claritylab/zero-shot-implicit-binary-bert')

>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>>     'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>>     'Search Screening Event'
>>> ]
>>> aspect = 'intent'
>>> aspect_sep_token = model.tokenizer.additional_special_tokens[0]
>>> text = f'{aspect} {aspect_sep_token} {text}'

>>> query = [[text, lb] for lb in labels]
>>> logits = model.predict(query, apply_softmax=True)
>>> print(logits)

[[7.3497969e-04 9.9926502e-01]
 [9.9988127e-01 1.1870124e-04]
 [9.9988961e-01 1.1033980e-04]
 [1.9227572e-03 9.9807727e-01]
 [9.9985313e-01 1.4685343e-04]
 [9.9938977e-01 6.1021477e-04]
 [9.9838030e-01 1.6197052e-03]]
```