File size: 7,470 Bytes
cd3f868
 
ef7c7b6
 
cd3f868
ef7c7b6
 
 
 
 
 
 
cd3f868
 
 
 
 
1adb5db
cd3f868
ef7c7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f868
 
 
 
 
ef7c7b6
cd3f868
ef7c7b6
cd3f868
ef7c7b6
 
 
cd3f868
ef7c7b6
 
 
cd3f868
ef7c7b6
 
cd3f868
ef7c7b6
cd3f868
ef7c7b6
 
cd3f868
ef7c7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f868
 
 
 
 
 
 
ef7c7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f868
 
 
ef7c7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
---
library_name: transformers
license: apache-2.0
base_model: FacebookAI/xlm-roberta-base
tags:
- sentiment
- text-classification
- multilingual
- modernbert
- sentiment-analysis
- product-reviews
- place-reviews
metrics:
- f1
- precision
- recall
model-index:
- name: clapAI/roberta-large-multilingual-sentiment
  results: []
datasets:
- clapAI/MultiLingualSentiment
language:
- en
- zh
- vi
- ko
- ja
- ar
- de
- es
- fr
- hi
- id
- it
- ms
- pt
- ru
- tr
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clapAI/modernBERT-large-multilingual-sentiment

## Introduction

**roberta-large-multilingual-sentiment** is a multilingual sentiment classification model, part of
the [Multilingual-Sentiment](https://huggingface.co./collections/clapAI/multilingual-sentiment-677416a6b23e03f52cb6cc3f)
collection.

The model is fine-tuned from [FacebookAI/xlm-roberta-base](https://huggingface.co./FacebookAI/xlm-roberta-base) using the
multilingual sentiment
dataset [clapAI/MultiLingualSentiment](https://huggingface.co./datasets/clapAI/MultiLingualSentiment).

Model supports multilingual sentiment classification across 16+ languages, including English, Vietnamese, Chinese,
French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Arabic, and more.

## Evaluation & Performance

After fine-tuning, the best model is loaded and evaluated on the `test` dataset
from [clapAI/MultiLingualSentiment](https://huggingface.co./datasets/clapAI/MultiLingualSentiment)


|                                                      Model                                                       | Pretrained Model  | Parameters | F1-score |
|:----------------------------------------------------------------------------------------------------------------:|:-----------------:|:----------:|:--------:|
|  [modernBERT-base-multilingual-sentiment](https://huggingface.co./clapAI/modernBERT-base-multilingual-sentiment)  |  ModernBERT-base  |    150M    |  80.16   |
| [modernBERT-large-multilingual-sentiment](https://huggingface.co./clapAI/modernBERT-large-multilingual-sentiment) | ModernBERT-large  |    396M    |   81.4   |
|     [roberta-base-multilingual-sentiment](https://huggingface.co./clapAI/roberta-base-multilingual-sentiment)     | XLM-roberta-base  |    278M    |   81.8   | 
|    [roberta-large-multilingual-sentiment](https://huggingface.co./clapAI/roberta-large-multilingual-sentiment)    | XLM-roberta-large |    560M    |   82.6   | 

## How to use

### Requirements

Since **transformers** only supports the **ModernBERT** architecture from version `4.48.0.dev0`, use the following
command to get the required version:

```bash
pip install "git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1" --upgrade
```

Install **FlashAttention** to accelerate inference performance

```bash
pip install flash-attn==2.7.2.post1
```

### Quick start

```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_id = "clapAI/roberta-large-multilingual-sentiment"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id, torch_dtype=torch.float16)

model.to(device)
model.eval()


# Retrieve labels from the model's configuration
id2label = model.config.id2label

texts = [
    # English
    {
        "text": "I absolutely love the new design of this app!",
        "label": "positive"
    },
    {
        "text": "The customer service was disappointing.",
        "label": "negative"
    },
    # Arabic
    {
        "text": "هذا المنتج رائع للغاية!",
        "label": "positive"
    },
    {
        "text": "الخدمة كانت سيئة للغاية.",
        "label": "negative"
    },
    # German
    {
        "text": "Ich bin sehr zufrieden mit dem Kauf.",
        "label": "positive"
    },
    {
        "text": "Die Lieferung war eine Katastrophe.",
        "label": "negative"
    },
    # Spanish
    {
        "text": "Este es el mejor libro que he leído.",
        "label": "positive"
    },
    {
        "text": "El producto llegó roto y no funciona.",
        "label": "negative"
    },
    # French
    {
        "text": "J'adore ce restaurant, la nourriture est délicieuse!",
        "label": "positive"
    },
    {
        "text": "Le service était très lent et désagréable.",
        "label": "negative"
    },
    # Indonesian
    {
        "text": "Saya sangat senang dengan pelayanan ini.",
        "label": "positive"
    },
    {
        "text": "Makanannya benar-benar tidak enak.",
        "label": "negative"
    },
    # Japanese
    {
        "text": "この製品は本当に素晴らしいです!",
        "label": "positive"
    },
    {
        "text": "サービスがひどかったです。",
        "label": "negative"
    },
    # Korean
    {
        "text": "이 제품을 정말 좋아해요!",
        "label": "positive"
    },
    {
        "text": "고객 서비스가 정말 실망스러웠어요.",
        "label": "negative"
    },
    # Russian
    {
        "text": "Этот фильм просто потрясающий!",
        "label": "positive"
    },
    {
        "text": "Качество было ужасным.",
        "label": "negative"
    },
    # Vietnamese
    {
        "text": "Tôi thực sự yêu thích sản phẩm này!",
        "label": "positive"
    },
    {
        "text": "Dịch vụ khách hàng thật tệ.",
        "label": "negative"
    },
    # Chinese
    {
        "text": "我非常喜欢这款产品!",
        "label": "positive"
    },
    {
        "text": "质量真的很差。",
        "label": "negative"
    }
]

for item in texts:
    text = item["text"]
    label = item["label"]

    inputs = tokenizer(text, return_tensors="pt").to(device)

    # Perform inference in inference mode
    with torch.inference_mode():
        outputs = model(**inputs)
        predictions = outputs.logits.argmax(dim=-1)
    print(f"Text: {text} | Label: {label} | Prediction: {id2label[predictions.item()]}")


```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:

```yaml
learning_rate: 5e-05
train_batch_size: 512
eval_batch_size: 512
seed: 42
distributed_type: multi-GPU
num_devices: 2
gradient_accumulation_steps: 2
total_train_batch_size: 2048
total_eval_batch_size: 1024
optimizer:
  type: adamw_torch_fused
  betas: [ 0.9, 0.999 ]
  epsilon: 1e-08
  optimizer_args: "No additional optimizer arguments"
lr_scheduler:
  type: cosine
  warmup_ratio: 0.01
num_epochs: 5.0
mixed_precision_training: Native AMP

```

### Framework versions

```plaintex
transformers==4.48.0.dev0
torch==2.4.0+cu121
datasets==3.2.0
tokenizers==0.21.0
flash-attn==2.7.2.post1
```

## Citation

If you find our project helpful, please star our repo and cite our work. Thanks!

```bibtex
@misc{roberta-large-multilingual-sentiment,
      title=roberta-large-multilingual-sentiment: A Multilingual Sentiment Classification Model},
      author={clapAI},
      howpublished={\url{https://huggingface.co./clapAI/roberta-large-multilingual-sentiment}},
      year={2025},
}