Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-sbl3.zip +3 -0
- ppo-LunarLander-v2-sbl3/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-sbl3/data +96 -0
- ppo-LunarLander-v2-sbl3/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-sbl3/policy.pth +3 -0
- ppo-LunarLander-v2-sbl3/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-sbl3/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 294.89 +/- 18.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f568b55ecb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f568b55ed40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f568b55edd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f568b55ee60>", "_build": "<function ActorCriticPolicy._build at 0x7f568b55eef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f568b55ef80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f568b55f010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f568b55f0a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f568b55f130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f568b55f1c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f568b55f250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f568b55f2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5693ef5100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 15007744, "_total_timesteps": 15000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682872445643084024, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0maDzhWrq8yOoNvkhMA75J20+9Pfn/vQAAgD8AAIA/s+YuvXuGoboVEPI4lcOZM5qhCTlRjAq4AACAPwAAgD/A3IW9jyJgujPgn7tCGpo4yEEau7gTazkAAIA/AAAAAM2A1LzD+XS6pi5aMxBRgC7vftm5OqzSswAAgD8AAIA/mrtavfakZLqRKqm78CZGOOQajTpg5Ec4AACAPwAAAAAa4RM95OWkP+c/kz4ZGCG/gbdfPZaBdz4AAAAAAAAAALNXR732yCi6cIGmvDCkbrXnOgY7xoHeNAAAgD8AAAAAGsuuvT7Oqj9PvJW+weryvngyOr6m2k6+AAAAAAAAAAAA4E88KSBCuotHRrqXrFi16xkaOfbNZzkAAIA/AACAPwDoXrzvS2M9xrf6PTF/6b5xUAQ9sQchPgAAAAAAAAAAAHBRvQ/eAj1B7aU+xo2vvsqZXj4pC5o+AAAAAAAAAACama05CghRu+wsjbzF6nU854KFvDU/VD0AAIA/AACAP5rVWj2flnY/HpLnPSY+h7/99xQ+6CtAPAAAAAAAAAAAJlEAPhDjoT9zjSY/MHwYv7Fm0T0uTOI+AAAAAAAAAACaKxG98nSBPw5Y4b3gmmO/Ej/zvWu8FL4AAAAAAAAAADOTKrqugYO6L9UqvYq79zVESSO6mm9etQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ2vUQ3SbcUCUhpRSlIwBbJRLqYwBdJRHQMLyHAkcCHR1fZQoaAZoCWgPQwi8saAwaANzQJSGlFKUaBVLt2gWR0DC8iMx0uDjdX2UKGgGaAloD0MIuRtEawXScECUhpRSlGgVS55oFkdAwvI1dvbXYnV9lChoBmgJaA9DCInrGFecmnNAlIaUUpRoFUuzaBZHQMLyPoYvWYp1fZQoaAZoCWgPQwh+xoUDIZlxQJSGlFKUaBVLnWgWR0DC8kD4N7SidX2UKGgGaAloD0MIxCEbSFfIckCUhpRSlGgVS65oFkdAwvJIXbdrPHV9lChoBmgJaA9DCCoDB7R0xUxAlIaUUpRoFUt0aBZHQMLyTAXdj5N1fZQoaAZoCWgPQwhZ38DkxnJyQJSGlFKUaBVLqWgWR0DC8k1AC4jKdX2UKGgGaAloD0MIherm4m+HcECUhpRSlGgVS5hoFkdAwvJSfFrEcnV9lChoBmgJaA9DCNdoOdBD4HBAlIaUUpRoFUuWaBZHQMLyXs+/xlR1fZQoaAZoCWgPQwi2MAvtHMpyQJSGlFKUaBVLsGgWR0DC8mZdfLLZdX2UKGgGaAloD0MIwAevXdqgSkCUhpRSlGgVS1ZoFkdAwvJpFCswL3V9lChoBmgJaA9DCLyQDg9h7nJAlIaUUpRoFUuyaBZHQMLybAnUlRh1fZQoaAZoCWgPQwjG3/YEyQB0QJSGlFKUaBVLvmgWR0DC8m5BcAzYdX2UKGgGaAloD0MI2LlpMw4dcUCUhpRSlGgVS5doFkdAwvJ28DB/JHV9lChoBmgJaA9DCPnX8so1f3RAlIaUUpRoFUuzaBZHQMLyemACnxd1fZQoaAZoCWgPQwidf7vsl3pxQJSGlFKUaBVLu2gWR0DC8nzC3w1BdX2UKGgGaAloD0MIi4f3HBjcckCUhpRSlGgVS75oFkdAwvKUmois4nV9lChoBmgJaA9DCFDEIoYd53BAlIaUUpRoFUumaBZHQMLyomnO0LN1fZQoaAZoCWgPQwgXY2Adh99xQJSGlFKUaBVLr2gWR0DC8qW2JBPbdX2UKGgGaAloD0MIj/6Xa9EsckCUhpRSlGgVS6VoFkdAwvKpOh0yQHV9lChoBmgJaA9DCNHN/kC5wXBAlIaUUpRoFUucaBZHQMLyrefqX4V1fZQoaAZoCWgPQwgAj6hQXctyQJSGlFKUaBVLv2gWR0DC9L+loDgZdX2UKGgGaAloD0MIgNWRI52bckCUhpRSlGgVS8JoFkdAwvTAauwHJXV9lChoBmgJaA9DCHjxftz+7XFAlIaUUpRoFUu1aBZHQML0y9iMHbB1fZQoaAZoCWgPQwgyPsxedr5wQJSGlFKUaBVLoGgWR0DC9M+RT0g9dX2UKGgGaAloD0MIjC0EOWiTckCUhpRSlGgVS69oFkdAwvTTGiHqNnV9lChoBmgJaA9DCOPjE7KzmHFAlIaUUpRoFUueaBZHQML02A5zYEp1fZQoaAZoCWgPQwi4c2GkVyFzQJSGlFKUaBVLxWgWR0DC9OOtfXwtdX2UKGgGaAloD0MIvwzGiISYcUCUhpRSlGgVS79oFkdAwvTw9kjHGXV9lChoBmgJaA9DCFVtN8H3DnNAlIaUUpRoFUvFaBZHQML09+sPrfN1fZQoaAZoCWgPQwjpYWh1slJyQJSGlFKUaBVLmmgWR0DC9QgUcn3MdX2UKGgGaAloD0MIY9UgzK3Lc0CUhpRSlGgVS8doFkdAwvUTsY2sJnV9lChoBmgJaA9DCLyUumTcBXBAlIaUUpRoFUufaBZHQML1FSJKraN1fZQoaAZoCWgPQwgibHh65ahxQJSGlFKUaBVLrmgWR0DC9RpQDV6NdX2UKGgGaAloD0MIx9XIrvR8c0CUhpRSlGgVS79oFkdAwvUeiFCb+nV9lChoBmgJaA9DCNyAzw+jEXNAlIaUUpRoFUuaaBZHQML1I16u4gB1fZQoaAZoCWgPQwh+b9Ofvf1wQJSGlFKUaBVLkWgWR0DC9S4vexfOdX2UKGgGaAloD0MIyQORRZqsdECUhpRSlGgVS65oFkdAwvUxPdEb53V9lChoBmgJaA9DCB/ylqvfMHJAlIaUUpRoFUuraBZHQML1O1loUSJ1fZQoaAZoCWgPQwjMCkW6n9NxQJSGlFKUaBVLnWgWR0DC9T7w4KhMdX2UKGgGaAloD0MILxUb8zovcUCUhpRSlGgVS6doFkdAwvVAHnEET3V9lChoBmgJaA9DCEW6n1PQhHJAlIaUUpRoFUuUaBZHQML1RTfR/mV1fZQoaAZoCWgPQwi1boPab6hyQJSGlFKUaBVLp2gWR0DC9WZNoJzDdX2UKGgGaAloD0MIrrg4KvfkcUCUhpRSlGgVS5hoFkdAwvVtLr5ZbXV9lChoBmgJaA9DCAlP6PWn9mRAlIaUUpRoFU3oA2gWR0DC9XOAEt/XdX2UKGgGaAloD0MIONxHbk3Zb0CUhpRSlGgVS5BoFkdAwvV8LcbiqHV9lChoBmgJaA9DCD6XqUkwYnJAlIaUUpRoFUuhaBZHQML1gykj5bh1fZQoaAZoCWgPQwjwFkhQvM1xQJSGlFKUaBVLmmgWR0DC9YdY+0PZdX2UKGgGaAloD0MIowOSsK8/cUCUhpRSlGgVS4toFkdAwvWLA0Kqn3V9lChoBmgJaA9DCH0E/vBzf3JAlIaUUpRoFUu8aBZHQML1j09ZA6d1fZQoaAZoCWgPQwh0RpT2xs5wQJSGlFKUaBVLnWgWR0DC9aEWqLjxdX2UKGgGaAloD0MIXvQVpBlrckCUhpRSlGgVS5doFkdAwvWiTK1XvHV9lChoBmgJaA9DCMDtCRKbrXNAlIaUUpRoFUu4aBZHQML1pcN6PbR1fZQoaAZoCWgPQwhNFCF1OzBxQJSGlFKUaBVLrmgWR0DC9bA1NxlydX2UKGgGaAloD0MI22ysxLz3ckCUhpRSlGgVS6doFkdAwvWyN/e+EnV9lChoBmgJaA9DCEPKT6r9nXBAlIaUUpRoFUudaBZHQML10yvs7dV1fZQoaAZoCWgPQwgBp3fxfgNwQJSGlFKUaBVLmWgWR0DC9db6rNnodX2UKGgGaAloD0MID2CRX78lckCUhpRSlGgVS5VoFkdAwvXmS/0ulHV9lChoBmgJaA9DCE/Pu7GgE3JAlIaUUpRoFUuHaBZHQML16pY1YQt1fZQoaAZoCWgPQwh0toDQ+ltxQJSGlFKUaBVLomgWR0DC9fkl7dBTdX2UKGgGaAloD0MIhdBBlzAYdECUhpRSlGgVS8BoFkdAwvX9peu3dHV9lChoBmgJaA9DCDdQ4J28d3NAlIaUUpRoFUvGaBZHQML2DuoHcDd1fZQoaAZoCWgPQwj8brplBz5xQJSGlFKUaBVLpGgWR0DC9hSH2ys0dX2UKGgGaAloD0MIkl1pGemwcUCUhpRSlGgVS5poFkdAwvYfvHcUNHV9lChoBmgJaA9DCO/i/bh9qXNAlIaUUpRoFUu1aBZHQML2Je8wpON1fZQoaAZoCWgPQwi5x9KHLk90QJSGlFKUaBVLwWgWR0DC9ilnTRYzdX2UKGgGaAloD0MIY3rCEg+bc0CUhpRSlGgVS7VoFkdAwvYxHmzSkXV9lChoBmgJaA9DCMDLDBtlDnRAlIaUUpRoFUuvaBZHQML2V0th/iJ1fZQoaAZoCWgPQwijBP2FHsNyQJSGlFKUaBVLsmgWR0DC9mAikftAdX2UKGgGaAloD0MIumkzTgMQc0CUhpRSlGgVS6JoFkdAwvZmFt8/lnV9lChoBmgJaA9DCBMteTwtrm9AlIaUUpRoFUugaBZHQML2ala0Qbx1fZQoaAZoCWgPQwgpd5/jI95wQJSGlFKUaBVLlGgWR0DC9nh4nndPdX2UKGgGaAloD0MIvXDnwshZckCUhpRSlGgVS4loFkdAwvaFa3ZwoHV9lChoBmgJaA9DCKvP1VZsH3JAlIaUUpRoFUu1aBZHQML2k1S4vvl1fZQoaAZoCWgPQwhOm3EaYltxQJSGlFKUaBVLsGgWR0DC9rQrJ8v3dX2UKGgGaAloD0MIlIlbBXHlcUCUhpRSlGgVS6VoFkdAwva3c9GI9HV9lChoBmgJaA9DCLYRT3Yzr3FAlIaUUpRoFUvBaBZHQML24n5BTn91fZQoaAZoCWgPQwi+2ebGNFJyQJSGlFKUaBVLtWgWR0DC9uI2qDK6dX2UKGgGaAloD0MI6Gor9hfmcUCUhpRSlGgVS5NoFkdAwvbuzsyBTXV9lChoBmgJaA9DCEyln3A2y3JAlIaUUpRoFUvUaBZHQML28gq3Eyd1fZQoaAZoCWgPQwiMuWsJuX1yQJSGlFKUaBVLi2gWR0DC9vTtgKF7dX2UKGgGaAloD0MIl65gG3FncECUhpRSlGgVS5ZoFkdAwvcDPgNwznV9lChoBmgJaA9DCLK7QEmBlXFAlIaUUpRoFUuzaBZHQML3FgDaGpN1fZQoaAZoCWgPQwj1K50Pz0lwQJSGlFKUaBVLm2gWR0DC9xXNs3yadX2UKGgGaAloD0MIqP+s+fHHckCUhpRSlGgVS45oFkdAwvckJVsDXHV9lChoBmgJaA9DCEwW9x8Zm3JAlIaUUpRoFUu6aBZHQML3QtEG7jF1fZQoaAZoCWgPQwhszVZe8tpwQJSGlFKUaBVLjWgWR0DC90RXnyNGdX2UKGgGaAloD0MIRBmqYupGckCUhpRSlGgVS5FoFkdAwvdLm4iHI3V9lChoBmgJaA9DCJQSglV102ZAlIaUUpRoFU3oA2gWR0DC91vkJa7mdX2UKGgGaAloD0MI+DO8WQPKcUCUhpRSlGgVS4RoFkdAwvd8B/Zuh3V9lChoBmgJaA9DCG1UpwOZE3JAlIaUUpRoFUuIaBZHQML3fXSjQAx1fZQoaAZoCWgPQwgL7ZxmgbBwQJSGlFKUaBVLoGgWR0DC94eNo8ISdX2UKGgGaAloD0MIoUs49Na0cUCUhpRSlGgVS7BoFkdAwveZUVi4KHV9lChoBmgJaA9DCPlqR3HOknJAlIaUUpRoFUuwaBZHQML3pmvfTCt1fZQoaAZoCWgPQwgPuRluALhwQJSGlFKUaBVLp2gWR0DC98oQBgeBdX2UKGgGaAloD0MIoyB4fDsoc0CUhpRSlGgVS79oFkdAwvfmoQ4CIXV9lChoBmgJaA9DCFzn3y57E3BAlIaUUpRoFUuXaBZHQML36xwhnrZ1fZQoaAZoCWgPQwj6sx8pYltzQJSGlFKUaBVLu2gWR0DC9/Tcdo38dX2UKGgGaAloD0MIysLX13qxckCUhpRSlGgVS4xoFkdAwvf7xTbWVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3664, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-sbl3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c231e55e12bb5d02b5ce6655e8a6209960112367b3fffa76facef8f6ed7ca5eb
|
3 |
+
size 147272
|
ppo-LunarLander-v2-sbl3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2-sbl3/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f568b55ecb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f568b55ed40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f568b55edd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f568b55ee60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f568b55eef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f568b55ef80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f568b55f010>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f568b55f0a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f568b55f130>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f568b55f1c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f568b55f250>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f568b55f2e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5693ef5100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 15007744,
|
25 |
+
"_total_timesteps": 15000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682872445643084024,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0maDzhWrq8yOoNvkhMA75J20+9Pfn/vQAAgD8AAIA/s+YuvXuGoboVEPI4lcOZM5qhCTlRjAq4AACAPwAAgD/A3IW9jyJgujPgn7tCGpo4yEEau7gTazkAAIA/AAAAAM2A1LzD+XS6pi5aMxBRgC7vftm5OqzSswAAgD8AAIA/mrtavfakZLqRKqm78CZGOOQajTpg5Ec4AACAPwAAAAAa4RM95OWkP+c/kz4ZGCG/gbdfPZaBdz4AAAAAAAAAALNXR732yCi6cIGmvDCkbrXnOgY7xoHeNAAAgD8AAAAAGsuuvT7Oqj9PvJW+weryvngyOr6m2k6+AAAAAAAAAAAA4E88KSBCuotHRrqXrFi16xkaOfbNZzkAAIA/AACAPwDoXrzvS2M9xrf6PTF/6b5xUAQ9sQchPgAAAAAAAAAAAHBRvQ/eAj1B7aU+xo2vvsqZXj4pC5o+AAAAAAAAAACama05CghRu+wsjbzF6nU854KFvDU/VD0AAIA/AACAP5rVWj2flnY/HpLnPSY+h7/99xQ+6CtAPAAAAAAAAAAAJlEAPhDjoT9zjSY/MHwYv7Fm0T0uTOI+AAAAAAAAAACaKxG98nSBPw5Y4b3gmmO/Ej/zvWu8FL4AAAAAAAAAADOTKrqugYO6L9UqvYq79zVESSO6mm9etQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.0005162666666667093,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ2vUQ3SbcUCUhpRSlIwBbJRLqYwBdJRHQMLyHAkcCHR1fZQoaAZoCWgPQwi8saAwaANzQJSGlFKUaBVLt2gWR0DC8iMx0uDjdX2UKGgGaAloD0MIuRtEawXScECUhpRSlGgVS55oFkdAwvI1dvbXYnV9lChoBmgJaA9DCInrGFecmnNAlIaUUpRoFUuzaBZHQMLyPoYvWYp1fZQoaAZoCWgPQwh+xoUDIZlxQJSGlFKUaBVLnWgWR0DC8kD4N7SidX2UKGgGaAloD0MIxCEbSFfIckCUhpRSlGgVS65oFkdAwvJIXbdrPHV9lChoBmgJaA9DCCoDB7R0xUxAlIaUUpRoFUt0aBZHQMLyTAXdj5N1fZQoaAZoCWgPQwhZ38DkxnJyQJSGlFKUaBVLqWgWR0DC8k1AC4jKdX2UKGgGaAloD0MIherm4m+HcECUhpRSlGgVS5hoFkdAwvJSfFrEcnV9lChoBmgJaA9DCNdoOdBD4HBAlIaUUpRoFUuWaBZHQMLyXs+/xlR1fZQoaAZoCWgPQwi2MAvtHMpyQJSGlFKUaBVLsGgWR0DC8mZdfLLZdX2UKGgGaAloD0MIwAevXdqgSkCUhpRSlGgVS1ZoFkdAwvJpFCswL3V9lChoBmgJaA9DCLyQDg9h7nJAlIaUUpRoFUuyaBZHQMLybAnUlRh1fZQoaAZoCWgPQwjG3/YEyQB0QJSGlFKUaBVLvmgWR0DC8m5BcAzYdX2UKGgGaAloD0MI2LlpMw4dcUCUhpRSlGgVS5doFkdAwvJ28DB/JHV9lChoBmgJaA9DCPnX8so1f3RAlIaUUpRoFUuzaBZHQMLyemACnxd1fZQoaAZoCWgPQwidf7vsl3pxQJSGlFKUaBVLu2gWR0DC8nzC3w1BdX2UKGgGaAloD0MIi4f3HBjcckCUhpRSlGgVS75oFkdAwvKUmois4nV9lChoBmgJaA9DCFDEIoYd53BAlIaUUpRoFUumaBZHQMLyomnO0LN1fZQoaAZoCWgPQwgXY2Adh99xQJSGlFKUaBVLr2gWR0DC8qW2JBPbdX2UKGgGaAloD0MIj/6Xa9EsckCUhpRSlGgVS6VoFkdAwvKpOh0yQHV9lChoBmgJaA9DCNHN/kC5wXBAlIaUUpRoFUucaBZHQMLyrefqX4V1fZQoaAZoCWgPQwgAj6hQXctyQJSGlFKUaBVLv2gWR0DC9L+loDgZdX2UKGgGaAloD0MIgNWRI52bckCUhpRSlGgVS8JoFkdAwvTAauwHJXV9lChoBmgJaA9DCHjxftz+7XFAlIaUUpRoFUu1aBZHQML0y9iMHbB1fZQoaAZoCWgPQwgyPsxedr5wQJSGlFKUaBVLoGgWR0DC9M+RT0g9dX2UKGgGaAloD0MIjC0EOWiTckCUhpRSlGgVS69oFkdAwvTTGiHqNnV9lChoBmgJaA9DCOPjE7KzmHFAlIaUUpRoFUueaBZHQML02A5zYEp1fZQoaAZoCWgPQwi4c2GkVyFzQJSGlFKUaBVLxWgWR0DC9OOtfXwtdX2UKGgGaAloD0MIvwzGiISYcUCUhpRSlGgVS79oFkdAwvTw9kjHGXV9lChoBmgJaA9DCFVtN8H3DnNAlIaUUpRoFUvFaBZHQML09+sPrfN1fZQoaAZoCWgPQwjpYWh1slJyQJSGlFKUaBVLmmgWR0DC9QgUcn3MdX2UKGgGaAloD0MIY9UgzK3Lc0CUhpRSlGgVS8doFkdAwvUTsY2sJnV9lChoBmgJaA9DCLyUumTcBXBAlIaUUpRoFUufaBZHQML1FSJKraN1fZQoaAZoCWgPQwgibHh65ahxQJSGlFKUaBVLrmgWR0DC9RpQDV6NdX2UKGgGaAloD0MIx9XIrvR8c0CUhpRSlGgVS79oFkdAwvUeiFCb+nV9lChoBmgJaA9DCNyAzw+jEXNAlIaUUpRoFUuaaBZHQML1I16u4gB1fZQoaAZoCWgPQwh+b9Ofvf1wQJSGlFKUaBVLkWgWR0DC9S4vexfOdX2UKGgGaAloD0MIyQORRZqsdECUhpRSlGgVS65oFkdAwvUxPdEb53V9lChoBmgJaA9DCB/ylqvfMHJAlIaUUpRoFUuraBZHQML1O1loUSJ1fZQoaAZoCWgPQwjMCkW6n9NxQJSGlFKUaBVLnWgWR0DC9T7w4KhMdX2UKGgGaAloD0MILxUb8zovcUCUhpRSlGgVS6doFkdAwvVAHnEET3V9lChoBmgJaA9DCEW6n1PQhHJAlIaUUpRoFUuUaBZHQML1RTfR/mV1fZQoaAZoCWgPQwi1boPab6hyQJSGlFKUaBVLp2gWR0DC9WZNoJzDdX2UKGgGaAloD0MIrrg4KvfkcUCUhpRSlGgVS5hoFkdAwvVtLr5ZbXV9lChoBmgJaA9DCAlP6PWn9mRAlIaUUpRoFU3oA2gWR0DC9XOAEt/XdX2UKGgGaAloD0MIONxHbk3Zb0CUhpRSlGgVS5BoFkdAwvV8LcbiqHV9lChoBmgJaA9DCD6XqUkwYnJAlIaUUpRoFUuhaBZHQML1gykj5bh1fZQoaAZoCWgPQwjwFkhQvM1xQJSGlFKUaBVLmmgWR0DC9YdY+0PZdX2UKGgGaAloD0MIowOSsK8/cUCUhpRSlGgVS4toFkdAwvWLA0Kqn3V9lChoBmgJaA9DCH0E/vBzf3JAlIaUUpRoFUu8aBZHQML1j09ZA6d1fZQoaAZoCWgPQwh0RpT2xs5wQJSGlFKUaBVLnWgWR0DC9aEWqLjxdX2UKGgGaAloD0MIXvQVpBlrckCUhpRSlGgVS5doFkdAwvWiTK1XvHV9lChoBmgJaA9DCMDtCRKbrXNAlIaUUpRoFUu4aBZHQML1pcN6PbR1fZQoaAZoCWgPQwhNFCF1OzBxQJSGlFKUaBVLrmgWR0DC9bA1NxlydX2UKGgGaAloD0MI22ysxLz3ckCUhpRSlGgVS6doFkdAwvWyN/e+EnV9lChoBmgJaA9DCEPKT6r9nXBAlIaUUpRoFUudaBZHQML10yvs7dV1fZQoaAZoCWgPQwgBp3fxfgNwQJSGlFKUaBVLmWgWR0DC9db6rNnodX2UKGgGaAloD0MID2CRX78lckCUhpRSlGgVS5VoFkdAwvXmS/0ulHV9lChoBmgJaA9DCE/Pu7GgE3JAlIaUUpRoFUuHaBZHQML16pY1YQt1fZQoaAZoCWgPQwh0toDQ+ltxQJSGlFKUaBVLomgWR0DC9fkl7dBTdX2UKGgGaAloD0MIhdBBlzAYdECUhpRSlGgVS8BoFkdAwvX9peu3dHV9lChoBmgJaA9DCDdQ4J28d3NAlIaUUpRoFUvGaBZHQML2DuoHcDd1fZQoaAZoCWgPQwj8brplBz5xQJSGlFKUaBVLpGgWR0DC9hSH2ys0dX2UKGgGaAloD0MIkl1pGemwcUCUhpRSlGgVS5poFkdAwvYfvHcUNHV9lChoBmgJaA9DCO/i/bh9qXNAlIaUUpRoFUu1aBZHQML2Je8wpON1fZQoaAZoCWgPQwi5x9KHLk90QJSGlFKUaBVLwWgWR0DC9ilnTRYzdX2UKGgGaAloD0MIY3rCEg+bc0CUhpRSlGgVS7VoFkdAwvYxHmzSkXV9lChoBmgJaA9DCMDLDBtlDnRAlIaUUpRoFUuvaBZHQML2V0th/iJ1fZQoaAZoCWgPQwijBP2FHsNyQJSGlFKUaBVLsmgWR0DC9mAikftAdX2UKGgGaAloD0MIumkzTgMQc0CUhpRSlGgVS6JoFkdAwvZmFt8/lnV9lChoBmgJaA9DCBMteTwtrm9AlIaUUpRoFUugaBZHQML2ala0Qbx1fZQoaAZoCWgPQwgpd5/jI95wQJSGlFKUaBVLlGgWR0DC9nh4nndPdX2UKGgGaAloD0MIvXDnwshZckCUhpRSlGgVS4loFkdAwvaFa3ZwoHV9lChoBmgJaA9DCKvP1VZsH3JAlIaUUpRoFUu1aBZHQML2k1S4vvl1fZQoaAZoCWgPQwhOm3EaYltxQJSGlFKUaBVLsGgWR0DC9rQrJ8v3dX2UKGgGaAloD0MIlIlbBXHlcUCUhpRSlGgVS6VoFkdAwva3c9GI9HV9lChoBmgJaA9DCLYRT3Yzr3FAlIaUUpRoFUvBaBZHQML24n5BTn91fZQoaAZoCWgPQwi+2ebGNFJyQJSGlFKUaBVLtWgWR0DC9uI2qDK6dX2UKGgGaAloD0MI6Gor9hfmcUCUhpRSlGgVS5NoFkdAwvbuzsyBTXV9lChoBmgJaA9DCEyln3A2y3JAlIaUUpRoFUvUaBZHQML28gq3Eyd1fZQoaAZoCWgPQwiMuWsJuX1yQJSGlFKUaBVLi2gWR0DC9vTtgKF7dX2UKGgGaAloD0MIl65gG3FncECUhpRSlGgVS5ZoFkdAwvcDPgNwznV9lChoBmgJaA9DCLK7QEmBlXFAlIaUUpRoFUuzaBZHQML3FgDaGpN1fZQoaAZoCWgPQwj1K50Pz0lwQJSGlFKUaBVLm2gWR0DC9xXNs3yadX2UKGgGaAloD0MIqP+s+fHHckCUhpRSlGgVS45oFkdAwvckJVsDXHV9lChoBmgJaA9DCEwW9x8Zm3JAlIaUUpRoFUu6aBZHQML3QtEG7jF1fZQoaAZoCWgPQwhszVZe8tpwQJSGlFKUaBVLjWgWR0DC90RXnyNGdX2UKGgGaAloD0MIRBmqYupGckCUhpRSlGgVS5FoFkdAwvdLm4iHI3V9lChoBmgJaA9DCJQSglV102ZAlIaUUpRoFU3oA2gWR0DC91vkJa7mdX2UKGgGaAloD0MI+DO8WQPKcUCUhpRSlGgVS4RoFkdAwvd8B/Zuh3V9lChoBmgJaA9DCG1UpwOZE3JAlIaUUpRoFUuIaBZHQML3fXSjQAx1fZQoaAZoCWgPQwgL7ZxmgbBwQJSGlFKUaBVLoGgWR0DC94eNo8ISdX2UKGgGaAloD0MIoUs49Na0cUCUhpRSlGgVS7BoFkdAwveZUVi4KHV9lChoBmgJaA9DCPlqR3HOknJAlIaUUpRoFUuwaBZHQML3pmvfTCt1fZQoaAZoCWgPQwgPuRluALhwQJSGlFKUaBVLp2gWR0DC98oQBgeBdX2UKGgGaAloD0MIoyB4fDsoc0CUhpRSlGgVS79oFkdAwvfmoQ4CIXV9lChoBmgJaA9DCFzn3y57E3BAlIaUUpRoFUuXaBZHQML36xwhnrZ1fZQoaAZoCWgPQwj6sx8pYltzQJSGlFKUaBVLu2gWR0DC9/Tcdo38dX2UKGgGaAloD0MIysLX13qxckCUhpRSlGgVS4xoFkdAwvf7xTbWVnVlLg=="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 3664,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2-sbl3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7d8fddf167fe23026f38399fc844410ed63662419755c6d46244efeaa6085ca
|
3 |
+
size 87929
|
ppo-LunarLander-v2-sbl3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53b9891275357b9f8abe7d8db6de5a30004c3649544b52962fabed3e37737b2f
|
3 |
+
size 43329
|
ppo-LunarLander-v2-sbl3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-sbl3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 294.88698779140975, "std_reward": 18.157281691992576, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T19:53:38.728660"}
|