File size: 48,417 Bytes
b8ea2b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
#!/usr/bin/env python
# coding: utf-8

# In[1]:


# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
#from subprocess import call
#command = "jupyter nbconvert Train_MLPMixer-Copy1.ipynb --to python"
#call(command,shell=True)


# # Import packages & functions

# In[2]:


import os
import sys
import json
import argparse
import numpy as np
import math
from einops import rearrange
import time
import random
import string
import h5py
from tqdm import tqdm

import webdataset as wds
import gc

import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torchvision import transforms

from accelerate import Accelerator, DeepSpeedPlugin

# tf32 data type is faster than standard float32
torch.backends.cuda.matmul.allow_tf32 = True

# custom functions #
import utils


# In[3]:


### Multi-GPU config ###
local_rank = os.getenv('RANK')
if local_rank is None: 
    local_rank = 0
else:
    local_rank = int(local_rank)
print("LOCAL RANK ", local_rank)  

num_devices = torch.cuda.device_count()
if num_devices==0: num_devices = 1

# ## UNCOMMENT BELOW SECTION AND COMMENT OUT DEEPSPEED SECTION TO AVOID USING DEEPSPEED ###
# accelerator = Accelerator(split_batches=False, mixed_precision="fp16")
# global_batch_size = batch_size = 32
# data_type = torch.float16 # change depending on your mixed_precision

### DEEPSPEED INITIALIZATION ###
if num_devices <= 1 and utils.is_interactive():
    global_batch_size = batch_size = 32
    print(f"Setting batch_size to {batch_size}")
    # can emulate a distributed environment for deepspeed to work in jupyter notebook
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
    os.environ["RANK"] = "0"
    os.environ["LOCAL_RANK"] = "0"
    os.environ["WORLD_SIZE"] = "1"
    os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
else:
    global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]    
    batch_size = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices

# alter the deepspeed config according to your global and local batch size
if local_rank == 0:
    with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json', 'r') as file:
        config = json.load(file)
    config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
    config['train_micro_batch_size_per_gpu'] = batch_size
    config['bf16'] = {'enabled': False}
    config['fp16'] = {'enabled': True}
    with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json', 'w') as file:
        json.dump(config, file)
else:
    # give some time for the local_rank=0 gpu to prep new deepspeed config file
    time.sleep(10)
deepspeed_plugin = DeepSpeedPlugin("/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2_cpuoffload.json")
accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)


# In[4]:


print("PID of this process =",os.getpid())
device = accelerator.device
print("device:",device)
num_workers = num_devices
print(accelerator.state)
world_size = accelerator.state.num_processes
distributed = not accelerator.state.distributed_type == 'NO'

# set data_type to match your mixed precision (automatically set based on deepspeed config)
if accelerator.mixed_precision == "bf16":
    data_type = torch.bfloat16
elif accelerator.mixed_precision == "fp16":
    data_type = torch.float16
else:
    data_type = torch.float32

print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size, "data_type =", data_type)
print = accelerator.print # only print if local_rank=0


# # Configurations

# In[5]:


# if running this interactively, can specify jupyter_args here for argparser to use
if utils.is_interactive():
    # create random model_name
    model_name = ''.join(random.choices(string.ascii_letters + string.digits, k=10))
    model_name = model_name + "_interactive"
    print("model_name:", model_name)

    # global_batch_size and batch_size should already be defined in the above cells
    # other variables can be specified in the following string:
    jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
                    --model_name={model_name} \
                    --subj=1 --batch_size={batch_size} --no-blurry_recon --no-depth_recon --hidden_dim=4096 \
                    --clip_scale=1. --blur_scale=100. --depth_scale=100. \
                    --max_lr=3e-4 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug --no-ckpt_saving"

    jupyter_args = jupyter_args.split()
    print(jupyter_args)
    
    from IPython.display import clear_output # function to clear print outputs in cell
    get_ipython().run_line_magic('load_ext', 'autoreload')
    # this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
    get_ipython().run_line_magic('autoreload', '2')


# In[6]:


parser = argparse.ArgumentParser(description="Model Training Configuration")
parser.add_argument(
    "--model_name", type=str, default="testing",
    help="name of model, used for ckpt saving and wandb logging (if enabled)",
)
parser.add_argument(
    "--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
    help="Path to where NSD data is stored / where to download it to",
)
parser.add_argument(
    "--subj",type=int, default=1, choices=[1,2,5,7],
)
parser.add_argument(
    "--batch_size", type=int, default=32,
    help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
)
parser.add_argument(
    "--wandb_log",action=argparse.BooleanOptionalAction,default=True,
    help="whether to log to wandb",
)
parser.add_argument(
    "--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
    help="if not using wandb and want to resume from a ckpt",
)
parser.add_argument(
    "--wandb_project",type=str,default="stability",
    help="wandb project name",
)
parser.add_argument(
    "--mixup_pct",type=float,default=.33,
    help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
)
parser.add_argument(
    "--blurry_recon",action=argparse.BooleanOptionalAction,default=True,
    help="whether to output blurry reconstructions",
)
parser.add_argument(
    "--depth_recon",action=argparse.BooleanOptionalAction,default=True,
    help="whether to output depth reconstructions",
)
parser.add_argument(
    "--blur_scale",type=float,default=100.,
    help="multiply loss from blurry recons by this number",
)
parser.add_argument(
    "--depth_scale",type=float,default=100.,
    help="multiply loss from depth recons by this number",
)
parser.add_argument(
    "--clip_scale",type=float,default=1.,
    help="multiply contrastive loss by this number",
)
parser.add_argument(
    "--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
    help="whether to use image augmentation",
)
parser.add_argument(
    "--num_epochs",type=int,default=120,
    help="number of epochs of training",
)
parser.add_argument(
    "--hidden_dim",type=int,default=4096,
)
parser.add_argument(
    "--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
)
parser.add_argument(
    "--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
)
parser.add_argument(
    "--ckpt_interval",type=int,default=5,
    help="save backup ckpt and reconstruct every x epochs",
)
parser.add_argument(
    "--seed",type=int,default=42,
)
parser.add_argument(
    "--max_lr",type=float,default=3e-4,
)
parser.add_argument(
    "--seq_len",type=int,default=2,
)

if utils.is_interactive():
    args = parser.parse_args(jupyter_args)
else:
    args = parser.parse_args()

# create global variables without the args prefix
for attribute_name in vars(args).keys():
    globals()[attribute_name] = getattr(args, attribute_name)


# In[7]:


outdir = os.path.abspath(f'../train_logs/{model_name}')
if not os.path.exists(outdir) and ckpt_saving:
    os.makedirs(outdir,exist_ok=True)
if use_image_aug:
    import kornia
    from kornia.augmentation.container import AugmentationSequential
    img_augment = AugmentationSequential(
        kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
        kornia.augmentation.Resize((224, 224)),
        kornia.augmentation.RandomHorizontalFlip(p=0.3),
        kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
        kornia.augmentation.RandomGrayscale(p=0.3),
        same_on_batch=False,
        data_keys=["input"],
    )


# # Prep data, models, and dataloaders

# ## Dataloader

# In[8]:


if subj==1:
    num_train = 24958
    num_test = 2770
test_batch_size = num_test

def my_split_by_node(urls): return urls
    
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
# train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..1}.tar"
print(train_url)

train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
                    .shuffle(750, initial=1500, rng=random.Random(42))\
                    .decode("torch")\
                    .rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
                    .to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=True, pin_memory=True)

test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
print(test_url)

test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
                    .shuffle(750, initial=1500, rng=random.Random(42))\
                    .decode("torch")\
                    .rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
                    .to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=True, pin_memory=True)


# ### check dataloaders are working

# In[9]:


test_vox_indices = []
test_73k_images = []
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
    test_vox_indices = np.append(test_vox_indices, behav[:,0,5].cpu().numpy())
    test_73k_images = np.append(test_73k_images, behav[:,0,0].cpu().numpy())
test_vox_indices = test_vox_indices.astype(np.int16)
print(test_i, (test_i+1) * test_batch_size, len(test_vox_indices))
print("---\n")

train_vox_indices = []
train_73k_images = []
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
    train_vox_indices = np.append(train_vox_indices, behav[:,0,5].long().cpu().numpy())
    train_73k_images = np.append(train_73k_images, behav[:,0,0].cpu().numpy())
train_vox_indices = train_vox_indices.astype(np.int16)
print(train_i, (train_i+1) * batch_size, len(train_vox_indices))


# ## Load data and images

# In[10]:


# load betas
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
# f = h5py.File(f'{data_path}/betas_subj0{subj}_thresholded_wholebrain.hdf5', 'r')

voxels = f['betas'][:]
print(f"subj0{subj} betas loaded into memory")
voxels = torch.Tensor(voxels).to("cpu").to(data_type)
print("voxels", voxels.shape)
num_voxels = voxels.shape[-1]

# load orig images
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
images = f['images'][:]
images = torch.Tensor(images).to("cpu").to(data_type)
print("images", images.shape)


# ## Load models

# ### CLIP image embeddings  model

# In[11]:


from models import Clipper
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
clip_seq_dim = 257
clip_emb_dim = 768 #1024
# hidden_dim = 4096
#seq_len = 1 #2 #32 


# ### SD VAE

# In[12]:


# if blurry_recon:
#     from diffusers import AutoencoderKL
#     autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
#     # autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
#     autoenc.eval()
#     autoenc.requires_grad_(False)
#     autoenc.to(device)
#     utils.count_params(autoenc)

if blurry_recon:# or depth_recon:
    from diffusers import VQModel
    autoenc = VQModel.from_pretrained("/fsx/proj-fmri/shared/cache/models--microsoft--vq-diffusion-ithq/snapshots/3f796fb49ee559370dc638dea1d8116af131d993/vqvae", torch_dtype=data_type)
    autoenc.eval()
    autoenc.requires_grad_(False)
    autoenc.to(device)
    utils.count_params(autoenc)


# #### downsampled images

# In[13]:


if blurry_recon:
    if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))

    input_batch = images[[30]].to(device)
    print(input_batch.shape)

    downsampled_image = nn.functional.interpolate(input_batch, size=(8, 8), mode='bilinear', align_corners=False)
    re_upsampled_image = nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest')
    re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
    print(re_upsampled_enc.shape)
    
    if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(re_upsampled_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))


# #### MiDaS depth

# In[14]:


if depth_recon:
    from controlnet_aux.midas import MidasDetector
    
    midas_depth = MidasDetector.from_pretrained(
      "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large", cache_dir="/fsx/proj-fmri/shared/cache").to(device)
    midas_depth.model.eval()
    midas_depth.model.requires_grad_(False)
    midas_depth.model.to(device)
    pass


# In[15]:


if depth_recon:
    if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))

    input_batch = images[[30,31]].float().to(device)
    print(input_batch.shape)
    
    midas_emb = midas_depth.model(input_batch).unsqueeze(1)
    print(midas_emb.shape)

    prediction = utils.resize(midas_emb, 32) #/30).clamp(0,1).half() # 30 is roughly prediction.max()
    print(prediction.shape)
    
    prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
    midas_emb_size = prediction.flatten(1).shape[1]
    print("midas_emb", prediction.shape, prediction.min(), prediction.max())
    print("midas_emb_size", midas_emb_size)
    
    if utils.is_interactive(): display(utils.torch_to_Image(utils.resize(prediction, 224))) 

    if blurry_recon:
        prediction = utils.resize(midas_emb, 128).half().repeat(1,3,1,1)
        prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
        prediction_enc = autoenc.encode(2*prediction-1).latents * 0.18215
        print("vae midas_emb", prediction_enc.shape, prediction_enc.min(), prediction_enc.max())
    
        if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(prediction_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))


# ### MindEye modules

# In[17]:


class MindEyeModule(nn.Module):
    def __init__(self):
        super(MindEyeModule, self).__init__()
    def forward(self, x):
        return x
        
model = MindEyeModule()
model


# In[18]:


time_embedding_dim = 512

class RidgeRegression(torch.nn.Module):
    # make sure to add weight_decay when initializing optimizer
    def __init__(self, input_size, out_features): 
        super(RidgeRegression, self).__init__()
        self.out_features = out_features
        self.linear = torch.nn.Linear(input_size, out_features)
    def forward(self, x):
        return self.linear(x)
        
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
utils.count_params(model.ridge)
utils.count_params(model)

b = torch.randn((2,1,voxels.shape[1]))
time_emb_test = torch.randn((2,1,time_embedding_dim))
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)


# In[24]:


num_past_voxels = 15



# In[25]:


from functools import partial
from diffusers.models.vae import Decoder
class BrainNetwork(nn.Module):
    def __init__(self, out_dim=768, in_dim=15724, seq_len=2, h=4096, n_blocks=4, drop=.15, clip_size=768):
        super().__init__()
        self.seq_len = seq_len
        self.h = h
        self.clip_size = clip_size
        
        # Initial linear layer to match the input dimensions to hidden dimensions
        # self.lin0 = nn.Linear(in_dim, seq_len * h)
        
        # Mixer Blocks
        self.mixer_blocks1 = nn.ModuleList([
            self.mixer_block1(h, drop) for _ in range(n_blocks)
        ])
        self.mixer_blocks2 = nn.ModuleList([
            self.mixer_block2(seq_len, drop) for _ in range(n_blocks)
        ])
        
        # Output linear layer
        self.clin1 = nn.Linear(h * seq_len, out_dim, bias=True)

        # low-rank matrices
        # self.rank = 500
        # self.U = nn.Parameter(torch.randn(self.rank, out_dim))
        # self.V = nn.Parameter(torch.randn(h * seq_len, self.rank))
        # self.S = nn.Parameter(torch.randn(out_dim))

        self.clip_proj = nn.Sequential(
            nn.LayerNorm(clip_size),
            nn.GELU(),
            nn.Linear(clip_size, 2048),
            nn.LayerNorm(2048),
            nn.GELU(),
            nn.Linear(2048, 2048),
            nn.LayerNorm(2048),
            nn.GELU(),
            nn.Linear(2048, clip_size)
        )

        if blurry_recon:
            # self.blin1 = nn.Sequential(
            #     nn.Linear(out_dim, 4096, bias=True),
            #     nn.LayerNorm(4096),
            #     nn.GELU(),
            #     nn.Linear(4096, 4096))
            self.blin1 = nn.Linear(h*seq_len, 4096)
            self.bgroupnorm = nn.GroupNorm(1, 256)
            self.bupsampler = Decoder(
                in_channels=256,
                out_channels=128,
                up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
                block_out_channels=[32, 64, 128],
                layers_per_block=1,
            )

        if depth_recon:
            # self.dlin1 = nn.Sequential(
            #         nn.Linear(h, midas_emb_size),
            #         nn.Sigmoid(),
            #     )
            self.dlin1 = nn.Linear(h*seq_len, 4096)
            self.dgroupnorm = nn.GroupNorm(1, 256)
            self.dupsampler = Decoder(
                in_channels=256,
                out_channels=1,#128,
                up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
                block_out_channels=[32, 64, 128, 256],
                layers_per_block=1,
            )
        
    def mixer_block1(self, h, drop):
        return nn.Sequential(
            nn.LayerNorm(h),
            self.mlp(h, h, drop),  # Token mixing
        )

    def mixer_block2(self, seq_len, drop):
        return nn.Sequential(
            nn.LayerNorm(seq_len),
            self.mlp(seq_len, seq_len, drop)  # Channel mixing
        )
    
    def mlp(self, in_dim, out_dim, drop):
        return nn.Sequential(
            nn.Linear(in_dim, out_dim),
            nn.GELU(),
            nn.Dropout(drop),
            nn.Linear(out_dim, out_dim),
        )
        
    def forward(self, x, idx = None):
        print(idx)
        # make empty tensors for blur and depth outputs
        b,d = torch.Tensor([0.]), torch.Tensor([0.])
        
        # Initial linear layer
        # x = self.lin0(x)
        
        # Reshape to seq_len by dim
        # x = x.reshape(-1, self.seq_len, self.h)
        
        # Mixer blocks
        #print("x shape ", x.shape)
        residual1 = x
        residual2 = x.permute(0,2,1)
        #print("residual 2", residual2.shape)
        for block1, block2 in zip(self.mixer_blocks1,self.mixer_blocks2):
            x = block1(x) + residual1
            #print("xblo", x.shape)
            residual1 = x
            x = x.permute(0,2,1)
            
            x = block2(x) + residual2
            #print("xblo2", x.shape)
            residual2 = x
            x = x.permute(0,2,1)
        
        # Flatten
        x = x.reshape(x.size(0), -1)
        
        c = self.clin1(x)

        # low rank linear to out dim cuts # params by nearly half compared to full linear mapping
        # c = (x @ (self.V/100) @ (self.U/100)) + self.S
        
        c = self.clip_proj(c.reshape(len(c), -1, self.clip_size))

        if blurry_recon:
            b = self.blin1(x)
            b = b.reshape(len(b), 256, 4, 4)
            b = self.bgroupnorm(b)
            b = self.bupsampler(b)
            
        if depth_recon:
            d = self.dlin1(x)#.reshape(len(x), 1, 32, 32)
            d = d.reshape(len(d), 256, 4, 4)
            d = self.dgroupnorm(d)
            d = self.dupsampler(d)
        
        return c, b, d


class TimeEmbedding(nn.Module):
    def __init__(self, embedding_time_dim=512, num_past_voxels=15):
        super().__init__()
        self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
        self.num_past_voxels = num_past_voxels
        self.embedding_time_dim = embedding_time_dim

    def forward(self, time):
        # time is (batch_size,)
        time = time.long()
        time = self.embedding_time(time)
        return time # (batch_size, embedding_time_dim)
    

#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)

model.backbone = BrainNetwork(h=hidden_dim, in_dim=hidden_dim, seq_len=seq_len, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim) 
utils.count_params(model.backbone)
utils.count_params(model)

# test that the model works on some fake data
b = torch.randn((1,seq_len,hidden_dim))
print("b.shape",b.shape)
with torch.no_grad():
    clip_, blur_, depth_ = model.backbone(b)
print(clip_.shape, blur_.shape, depth_.shape)


# In[ ]:


no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
opt_grouped_parameters = [
    {'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
    {'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
    {'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
]

optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr)

if lr_scheduler_type == 'linear':
    lr_scheduler = torch.optim.lr_scheduler.LinearLR(
        optimizer,
        total_iters=int(np.floor(num_epochs*(num_train/num_devices/batch_size))),
        last_epoch=-1
    )
elif lr_scheduler_type == 'cycle':
    total_steps=int(np.floor(num_epochs*(num_train/num_devices/batch_size)))
    print("total_steps", total_steps)
    lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
        optimizer, 
        max_lr=max_lr,
        total_steps=total_steps,
        final_div_factor=1000,
        last_epoch=-1, pct_start=2/num_epochs
    )
    
def save_ckpt(tag):    
    ckpt_path = outdir+f'/{tag}.pth'
    print(f'saving {ckpt_path}',flush=True)
    unwrapped_model = accelerator.unwrap_model(model)
    try:
        torch.save({
            'epoch': epoch,
            'model_state_dict': unwrapped_model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'lr_scheduler': lr_scheduler.state_dict(),
            'train_losses': losses,
            'test_losses': test_losses,
            'lrs': lrs,
            }, ckpt_path)
    except:
        print("Couldn't save... moving on to prevent crashing.")
    del unwrapped_model
        
print("\nDone with model preparations!")
utils.count_params(model)


# # Weights and Biases

# In[ ]:


if local_rank==0 and wandb_log: # only use main process for wandb logging
    import wandb
    wandb_project = 'mindeyev2'
    wandb_run = model_name
    wandb_notes = ''
    
    print(f"wandb {wandb_project} run {wandb_run}")
    wandb.login(host='https://stability.wandb.io')#, relogin=True)
    wandb_config = {
      "model_name": model_name,
      "global_batch_size": global_batch_size,
      "batch_size": batch_size,
      "num_epochs": num_epochs,
      "clip_scale": clip_scale,
      "blur_scale": blur_scale,
      "use_image_aug": use_image_aug,
      "max_lr": max_lr,
      "mixup_pct": mixup_pct,
      "num_train": num_train,
      "num_test": num_test,
      "ckpt_interval": ckpt_interval,
      "ckpt_saving": ckpt_saving,
      "seed": seed,
      "distributed": distributed,
      "num_devices": num_devices,
      "world_size": world_size,
      "train_url": train_url,
      "test_url": test_url,
    }
    print("wandb_config:\n",wandb_config)
    if False: # wandb_auto_resume
        print("wandb_id:",model_name)
        wandb.init(
            id = model_name,
            project=wandb_project,
            name=wandb_run,
            config=wandb_config,
            notes=wandb_notes,
            resume="allow",
        )
    else:
        wandb.init(
            project=wandb_project,
            name=wandb_run,
            config=wandb_config,
            notes=wandb_notes,
        )
else:
    wandb_log = False


# # Main

# In[ ]:


epoch = 0
losses, test_losses, lrs = [], [], []
best_test_loss = 1e9
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))

# Optionally resume from checkpoint #
if resume_from_ckpt:
    print("\n---resuming from last.pth ckpt---\n")
    try:
        checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
    except:
        print('last.pth failed... trying last_backup.pth')
        checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
    epoch = checkpoint['epoch']
    print("Epoch",epoch)
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
    model.load_state_dict(checkpoint['model_state_dict'])
    del checkpoint
elif wandb_log:
    if wandb.run.resumed:
        print("\n---resuming from last.pth ckpt---\n")
        try:
            checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
        except:
            print('last.pth failed... trying last_backup.pth')
            checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
        epoch = checkpoint['epoch']
        print("Epoch",epoch)
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        model.load_state_dict(checkpoint['model_state_dict'])
        del checkpoint
torch.cuda.empty_cache()


# In[ ]:


model, optimizer, train_dl, lr_scheduler = accelerator.prepare(
model, optimizer, train_dl, lr_scheduler
)
# leaving out test_dl since we will only have local_rank 0 device do evals


# In[ ]:


def add_saturation(image, alpha=2):
    gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
    gray_image = gray_image.unsqueeze(1).expand_as(image)
    saturated_image = alpha * image + (1 - alpha) * gray_image
    return torch.clamp(saturated_image, 0, 1)


# In[ ]:


print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
test_image, test_voxel = None, None
mse = nn.MSELoss()
l1 = nn.L1Loss()

for epoch in progress_bar:
    model.train()
    
    fwd_percent_correct = 0.
    bwd_percent_correct = 0.
    test_fwd_percent_correct = 0.
    test_bwd_percent_correct = 0.

    loss_clip_total = 0.
    loss_blurry_total = 0.
    loss_depth_total = 0.
    test_loss_clip_total = 0.
    test_loss_blurry_total = 0.
    test_loss_depth_total = 0.

    blurry_pixcorr = 0.
    test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
    
    for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
        with torch.cuda.amp.autocast(dtype=data_type):
            optimizer.zero_grad()
    
            #voxel = voxels[behav[:,0,5].cpu().long()].to(device)
            #image = images[behav[:,0,0].cpu().long()].to(device).float()
            
            #past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
            #past_15_times = torch.Tensor([i for i in range(seq_len - 1)]).to(device) # 15
            
            voxel = voxels[behav[:,0,5].cpu().long()].to(device)
            image = images[behav[:,0,0].cpu().long()].to(device).float()

            past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
            past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
            #for past in range(1):
            #    past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
    
            if blurry_recon:
                # blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
                blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215

            if depth_recon:
                # depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
                depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
                depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
                depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
            
            if use_image_aug: 
                image = img_augment(image)
    
            clip_target = clip_model.embed_image(image)
            assert not torch.any(torch.isnan(clip_target))
    
            if epoch < int(mixup_pct * num_epochs):
                voxel, perm, betas, select = utils.mixco(voxel)
                past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
                
            for p in range(seq_len-1):
                #print(past_behav.shape) #128, 15, 17
                #print(past_behav[:,p,-1])
                #print(past_15_voxels.shape) # 128, 1, 15724
                mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
                #print(mask) # 128
                past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
                #print(past_15_voxels)
                
            past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
            past_15_times = past_15_times.repeat(voxel.shape[0], 1)
            past_15_times = past_15_times.reshape(-1)
            time_embeddings = model.time_embedding(past_15_times)
            past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
            
            positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
            voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
            voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
            voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
            #unsqueeze(1) # bz * 2, 1, 4096
            
            # past_voxel_ridge = model.ridge(past_voxel)
            # voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1), past_voxel_ridge.unsqueeze(1)), axis=1)
            #print(voxel_ridge.shape)
    
            clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge, idx = train_i)
            
            clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
            clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
    
            if epoch < int(mixup_pct * num_epochs):                
                loss_clip = utils.mixco_nce(
                    clip_voxels_norm,
                    clip_target_norm,
                    temp=.006, 
                    perm=perm, betas=betas, select=select)
            else:
                epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
                loss_clip = utils.soft_clip_loss(
                    clip_voxels_norm,
                    clip_target_norm,
                    temp=epoch_temp)

            loss_clip_total += loss_clip.item()
            loss_clip *= clip_scale
            loss = loss_clip
    
            if blurry_recon:
                downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
                re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
                re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
                
                loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
                loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
                loss_blurry_total += loss_blurry.item()
                loss_blurry *= blur_scale
                loss += loss_blurry

            if depth_recon:
                loss_depth = l1(depth_image_enc_, depth_image_enc)
                # loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
                loss_depth_total += loss_depth.item()
                loss_depth *= depth_scale
                loss += loss_depth
    
            # forward and backward top 1 accuracy        
            labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device) 
            fwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm)), labels, k=1).item()
            bwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm)), labels, k=1).item()
    
            if blurry_recon:
                with torch.no_grad():
                    # only doing pixcorr eval on a subset of the samples per batch because its costly & slow to compute autoenc.decode()
                    random_samps = np.random.choice(np.arange(len(voxel)), size=batch_size//5, replace=False)
                    # random_samps = np.arange(batch_size//5)
                    blurry_recon_images = (autoenc.decode(blurry_image_enc_[random_samps]/0.18215).sample/ 2 + 0.5).clamp(0,1)
                    # pixcorr_origsize_nanmean is computationally less intense than utils.pixcorr and uses nanmean instead of mean
                    pixcorr = utils.pixcorr_origsize_nanmean(image[random_samps], blurry_recon_images)
                    # pixcorr = utils.pixcorr(image[random_samps], blurry_recon_images)
                    # loss += (1 - pixcorr)
                    blurry_pixcorr += pixcorr.item()
                    # utils.check_loss(pixcorr)

            utils.check_loss(loss)
            accelerator.backward(loss)
            optimizer.step()
    
            losses.append(loss.item())
            lrs.append(optimizer.param_groups[0]['lr'])
    
            if lr_scheduler_type is not None:
                lr_scheduler.step()

    model.eval()
    if local_rank==0:
        with torch.no_grad(), torch.cuda.amp.autocast(dtype=data_type): 
            for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):  
                # all test samples should be loaded per batch such that test_i should never exceed 0
                assert len(behav) == num_test
                
                ## Average same-image repeats ##
                if test_image is None:
                    voxel = voxels[behav[:,0,5].cpu().long()]
                    image = behav[:,0,0].cpu().long()
                    
                    unique_image, sort_indices = torch.unique(image, return_inverse=True)
                    for im in unique_image:
                        locs = torch.where(im == image)[0]
                        if test_image is None:
                            test_image = images[im][None]
                            test_voxel = torch.mean(voxel[locs],axis=0)[None]
                        else:
                            test_image = torch.vstack((test_image, images[im][None]))
                            test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
    
                # random sample of 300
                random_indices = torch.arange(len(test_voxel))[:300]
                voxel = test_voxel[random_indices].to(device)
                image = test_image[random_indices].to(device)
                assert len(image) == 300
                
                current_past_behav = past_behav[random_indices]

                past_15_voxels = voxels[current_past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
                past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15

                if blurry_recon:
                    # blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
                    blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215

                if depth_recon:
                    # depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
                    depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
                    depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
                    depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
            
                clip_target = clip_model.embed_image(image.float())
                

                past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
                past_15_times = past_15_times.repeat(voxel.shape[0], 1)
                past_15_times = past_15_times.reshape(-1)
                time_embeddings = model.time_embedding(past_15_times)
                past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)

                positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
                voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
                voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
                voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
                
                #voxel_ridge = model.ridge(voxel).unsqueeze(1)

                # voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1),voxel_ridge.unsqueeze(1)),axis=1)
                
                clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
                
                clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
                clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
        
                loss_clip = utils.soft_clip_loss(
                    clip_voxels_norm,
                    clip_target_norm,
                    temp=.006)
                test_loss_clip_total += loss_clip.item()
                loss_clip = loss_clip * clip_scale
                loss = loss_clip

                if blurry_recon:
                    downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
                    re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
                    re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
                    
                    loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
                    loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
                    test_loss_blurry_total += loss_blurry.item()
                    loss_blurry *= blur_scale
                    loss += loss_blurry
    
                    # halving the batch size because the decoder is computationally heavy
                    blurry_recon_images = (autoenc.decode(blurry_image_enc_[:len(voxel)//2]/0.18215).sample / 2 + 0.5).clamp(0,1)
                    blurry_recon_images = torch.vstack((blurry_recon_images, (autoenc.decode(blurry_image_enc_[len(voxel)//2:]/0.18215).sample / 2 + 0.5).clamp(0,1)))
                    pixcorr = utils.pixcorr(image, blurry_recon_images)
                    loss += (1 - pixcorr)
                    test_blurry_pixcorr += pixcorr.item()

                if depth_recon:
                    loss_depth = l1(depth_image_enc_, depth_image_enc)
                    # loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
                    test_loss_depth_total += loss_depth.item()
                    loss_depth *= depth_scale
                    loss += loss_depth
        
                # forward and backward top 1 accuracy        
                labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device) 
                test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1).item()
                test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1).item()

                utils.check_loss(loss)                
                test_losses.append(loss.item())

            # if utils.is_interactive(): clear_output(wait=True)
            print("---")
            
            assert (test_i+1) == 1
            logs = {"train/loss": np.mean(losses[-(train_i+1):]),
                "test/loss": np.mean(test_losses[-(test_i+1):]),
                "train/lr": lrs[-1],
                "train/num_steps": len(losses),
                "test/num_steps": len(test_losses),
                "train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
                "train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
                "test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
                "test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
                "train/loss_clip_total": loss_clip_total / (train_i + 1),
                "train/loss_blurry_total": loss_blurry_total / (train_i + 1),
                "test/loss_clip_total": test_loss_clip_total / (test_i + 1),
                "test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
                "train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
                "test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
                "train/loss_depth_total": loss_depth_total / (train_i + 1),
                "test/loss_depth_total": test_loss_depth_total / (test_i + 1),
                }
    
            if blurry_recon:    
                # transform blurry recon latents to images and plot it
                fig, axes = plt.subplots(1, 8, figsize=(10, 4))
                jj=-1
                for j in [0,1,2,3]:
                    jj+=1
                    axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
                    axes[jj].axis('off')
                    jj+=1
                    axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc_[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
                    axes[jj].axis('off')
                
                if wandb_log:
                    logs[f"test/recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
                    plt.close()
                else:
                    plt.show()

            if depth_recon:
                # transform blurry recon latents to images and plot it
                fig, axes = plt.subplots(1, 8, figsize=(10, 4))
                # axes[0].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
                # axes[1].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc_[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
                jj=-1
                for j in [0,1,2,3]:
                    jj+=1
                    axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc[[j]].view(1,1,32,32).clamp(0,1), 224)))
                    axes[jj].axis('off')
                    jj+=1
                    axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc_[[j]].view(1,1,32,32).clamp(0,1), 224)))
                    axes[jj].axis('off')
                if wandb_log:
                    logs[f"test/depth_recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
                    plt.close()
                else:
                    plt.show()
            
            progress_bar.set_postfix(**logs)
    
            # Save model checkpoint and reconstruct
            if epoch % ckpt_interval == 0:
                if not utils.is_interactive():
                    save_ckpt(f'last')
                    
            if wandb_log: wandb.log(logs)

    # wait for other GPUs to catch up if needed
    accelerator.wait_for_everyone()
    torch.cuda.empty_cache()
    gc.collect()

print("\n===Finished!===\n")
if ckpt_saving:
    save_ckpt(f'last')
if not utils.is_interactive():
    sys.exit(0)


# In[ ]:


plt.plot(losses)
plt.show()
plt.plot(test_losses)
plt.show()


# # Retrieve nearest neighbor in the training set using test set data

# In[ ]:


annots = np.load("/fsx/proj-fmri/shared/mindeyev2_dataset/COCO_73k_annots_curated.npy")


# In[ ]:


ii=2
all_indices = np.unique(train_73k_images) #np.hstack((test_vox_indices[ii],train_vox_indices))
with torch.no_grad(), torch.cuda.amp.autocast():
    for batch in tqdm(range(0,len(all_indices),512)):
        if batch==0:
            clip_target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
        else:
            target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
            clip_target = torch.vstack((clip_target,target))
    clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)

    voxel = test_voxel[[ii]].to(device)
    image = test_image[[ii]].to(device)

    print("Original Image (test set)")
    display(utils.torch_to_Image(image))
    
    clip_target = clip_model.embed_image(image).cpu()
    # clip_target_norm = torch.vstack((clip_target_norm, nn.functional.normalize(clip_target.flatten(1), dim=-1)))
    
    voxel_ridge = model.ridge(voxel).unsqueeze(1)
    clip_voxels, _, _ = model.backbone(voxel_ridge)    
    clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
    clip_voxels_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)

    print("clip_voxels_norm", clip_voxels_norm.shape)
    print("clip_target_norm", clip_target_norm.shape)
    
    sortt = torch.argsort(utils.batchwise_cosine_similarity(clip_voxels_norm.cpu(), 
                                                            clip_target_norm).flatten()).flip(0)
    picks = all_indices[sortt[:5]]

    print("\nNearest neighbors in training set")
    for ip,p in enumerate(picks):
        display(utils.torch_to_Image(images[[p]]))
        # print(utils.select_annotations([annots[int(p)]]))
        if ip==0: predicted_caption = utils.select_annotations([annots[int(p)]])[0]

print("\n=====\npredicted_caption:\n", predicted_caption)


# # Feed into Stable Diffusion XL for reconstructions

# In[ ]:


from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "/fsx/proj-fmri/shared/cache/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/f898a3e026e802f68796b95e9702464bac78d76f", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe.to("cuda")
pass


# In[ ]:


prompt = predicted_caption
recon = pipe(prompt=prompt).images[0]


# In[ ]:


print("Seen image")
display(utils.torch_to_Image(image))

print("Reconstruction")
utils.torch_to_Image(utils.resize(transforms.ToTensor()(recon),224))