File size: 27,261 Bytes
b8ea2b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
# from subprocess import call
# command = "jupyter nbconvert Train.ipynb --to python"
# call(command,shell=True)
# # Import packages & functions
# In[2]:
import os
import sys
import json
import argparse
import numpy as np
import math
from einops import rearrange
import time
import random
import h5py
from tqdm import tqdm
import webdataset as wds
import gc
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torchvision import transforms
from accelerate import Accelerator, DeepSpeedPlugin
# tf32 data type is faster than standard float32
torch.backends.cuda.matmul.allow_tf32 = True
# custom functions #
import utils
global_batch_size = 128 #128
# In[ ]:
### Multi-GPU config ###
local_rank = os.getenv('RANK')
if local_rank is None:
local_rank = 0
else:
local_rank = int(local_rank)
print("LOCAL RANK ", local_rank)
num_devices = torch.cuda.device_count()
if num_devices==0: num_devices = 1
accelerator = Accelerator(split_batches=False)
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
# if num_devices <= 1 and utils.is_interactive():
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
# os.environ["MASTER_ADDR"] = "localhost"
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
# os.environ["RANK"] = "0"
# os.environ["LOCAL_RANK"] = "0"
# os.environ["WORLD_SIZE"] = "1"
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
# # alter the deepspeed config according to your global and local batch size
# if local_rank == 0:
# with open('deepspeed_config_stage2.json', 'r') as file:
# config = json.load(file)
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
# with open('deepspeed_config_stage2.json', 'w') as file:
# json.dump(config, file)
# else:
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
# time.sleep(10)
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
### Multi-GPU config ###
print("PID of this process =",os.getpid())
device = accelerator.device
print("device:",device)
num_workers = num_devices
print(accelerator.state)
world_size = accelerator.state.num_processes
distributed = not accelerator.state.distributed_type == 'NO'
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
print = accelerator.print # only print if local_rank=0
# In[ ]:
# # Configurations
# In[3]:
# In[4]:
parser = argparse.ArgumentParser(description="Model Training Configuration")
parser.add_argument(
"--model_name", type=str, default="testing",
help="name of model, used for ckpt saving and wandb logging (if enabled)",
)
parser.add_argument(
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
help="Path to where NSD data is stored / where to download it to",
)
parser.add_argument(
"--subj",type=int, default=1, choices=[1,2,5,7],
)
parser.add_argument(
"--batch_size", type=int, default=32,
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
)
parser.add_argument(
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
help="whether to log to wandb",
)
parser.add_argument(
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
help="if not using wandb and want to resume from a ckpt",
)
parser.add_argument(
"--wandb_project",type=str,default="stability",
help="wandb project name",
)
parser.add_argument(
"--mixup_pct",type=float,default=.33,
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
)
parser.add_argument(
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
help="whether to use image augmentation",
)
parser.add_argument(
"--num_epochs",type=int,default=240,
help="number of epochs of training",
)
parser.add_argument(
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
)
parser.add_argument(
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
)
parser.add_argument(
"--ckpt_interval",type=int,default=5,
help="save backup ckpt and reconstruct every x epochs",
)
parser.add_argument(
"--seed",type=int,default=42,
)
parser.add_argument(
"--max_lr",type=float,default=3e-4,
)
parser.add_argument(
"--n_samples_save",type=int,default=0,choices=[0,1],
help="Number of reconstructions for monitoring progress, 0 will speed up training",
)
if utils.is_interactive():
args = parser.parse_args(jupyter_args)
else:
args = parser.parse_args()
# create global variables without the args prefix
for attribute_name in vars(args).keys():
globals()[attribute_name] = getattr(args, attribute_name)
print("global batch_size", batch_size)
batch_size = int(batch_size / num_devices)
print("batch_size", batch_size)
# In[5]:
outdir = os.path.abspath(f'../train_logs/{model_name}')
if not os.path.exists(outdir):
os.makedirs(outdir,exist_ok=True)
if use_image_aug:
import kornia
from kornia.augmentation.container import AugmentationSequential
img_augment = AugmentationSequential(
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
kornia.augmentation.Resize((224, 224)),
kornia.augmentation.RandomHorizontalFlip(p=0.3),
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
kornia.augmentation.RandomGrayscale(p=0.3),
same_on_batch=False,
data_keys=["input"],
)
# # Prep data, models, and dataloaders
# ## Dataloader
# In[6]:
if subj==1:
num_train = 24958
num_test = 2770
test_batch_size = num_test
def my_split_by_node(urls): return urls
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
print(train_url)
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
.shuffle(750, initial=1500, rng=random.Random(42))\
.decode("torch")\
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
print(test_url)
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
.shuffle(750, initial=1500, rng=random.Random(42))\
.decode("torch")\
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
# ### check dataloaders are working
# In[7]:
# test_indices = []
# test_images = []
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
# test_images = np.append(test_images, behav[:,0,0].numpy())
# test_indices = test_indices.astype(np.int16)
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
# print("---\n")
# train_indices = []
# train_images = []
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
# train_images = np.append(train_images, behav[:,0,0].numpy())
# train_indices = train_indices.astype(np.int16)
# print(train_i, (train_i+1) * batch_size, len(train_indices))
# ## Load voxel betas, K-means clustering model, and images
# In[8]:
# load betas
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
voxels = f['betas'][:]
print(f"subj0{subj} betas loaded into memory")
voxels = torch.Tensor(voxels).to("cpu").half()
if subj==1:
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
print("voxels", voxels.shape)
num_voxels = voxels.shape[-1]
# load orig images
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
images = f['images'][:]
images = torch.Tensor(images).to("cpu").half()
print("images", images.shape)
# In[9]:
from models import Clipper
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
clip_seq_dim = 257
clip_emb_dim = 768
hidden_dim = 4096
from diffusers import AutoencoderKL
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
autoenc.eval()
autoenc.requires_grad_(False)
autoenc.to(device)
utils.count_params(autoenc)
# In[10]:
class MindEyeModule(nn.Module):
def __init__(self):
super(MindEyeModule, self).__init__()
def forward(self, x):
return x
model = MindEyeModule()
model
# In[11]:
class RidgeRegression(torch.nn.Module):
# make sure to add weight_decay when initializing optimizer
def __init__(self, input_size, out_features):
super(RidgeRegression, self).__init__()
self.out_features = out_features
self.linear = torch.nn.Linear(input_size, out_features)
def forward(self, x):
return self.linear(x)
model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)
utils.count_params(model.ridge)
utils.count_params(model)
b = torch.randn((2,1,voxels.shape[1]))
print(b.shape, model.ridge(b).shape)
# In[12]:
from functools import partial
from diffusers.models.vae import Decoder
class BrainNetwork(nn.Module):
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15, blurry_dim=16):
super().__init__()
self.blurry_dim = blurry_dim
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
self.lin0 = nn.Linear(in_dim, h)
self.mlp = nn.ModuleList([
nn.Sequential(
nn.Linear(h, h),
*[item() for item in act_and_norm],
nn.Dropout(drop)
) for _ in range(n_blocks)
])
self.lin1 = nn.Linear(h, out_dim, bias=True)
self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
self.n_blocks = n_blocks
self.clip_size = clip_size
self.clip_proj = nn.Sequential(
nn.LayerNorm(clip_size),
nn.GELU(),
nn.Linear(clip_size, 2048),
nn.LayerNorm(2048),
nn.GELU(),
nn.Linear(2048, 2048),
nn.LayerNorm(2048),
nn.GELU(),
nn.Linear(2048, clip_size)
)
self.upsampler = Decoder(
in_channels=64,
out_channels=4,
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
block_out_channels=[64, 128, 256],
layers_per_block=1,
)
def forward(self, x):
x = self.lin0(x)
residual = x
for res_block in range(self.n_blocks):
x = self.mlp[res_block](x)
x += residual
residual = x
x = x.reshape(len(x), -1)
x = self.lin1(x)
b = self.blin1(x)
b = self.upsampler(b.reshape(len(b), -1, 7, 7))
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
return c, b
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
utils.count_params(model.backbone)
utils.count_params(model)
b = torch.randn((2,hidden_dim))
print(b.shape)
clip_, blur_ = model.backbone(b)
print(clip_.shape, blur_.shape)
# In[13]:
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
opt_grouped_parameters = [
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
]
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
if lr_scheduler_type == 'linear':
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer,
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
last_epoch=-1
)
elif lr_scheduler_type == 'cycle':
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=max_lr,
total_steps=total_steps,
final_div_factor=1000,
last_epoch=-1, pct_start=2/num_epochs
)
def save_ckpt(tag):
ckpt_path = outdir+f'/{tag}.pth'
print(f'saving {ckpt_path}',flush=True)
unwrapped_model = accelerator.unwrap_model(model)
try:
torch.save({
'epoch': epoch,
'model_state_dict': unwrapped_model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'train_losses': losses,
'test_losses': test_losses,
'lrs': lrs,
}, ckpt_path)
except:
print("Couldn't save... moving on to prevent crashing.")
del unwrapped_model
print("\nDone with model preparations!")
utils.count_params(model)
# # Weights and Biases
# In[14]:
# params for wandb
# params for wandb
wandb_log = True
if local_rank==0 and wandb_log: # only use main process for wandb logging
import wandb
wandb_project = 'stability'
wandb_run = model_name
wandb_notes = ''
print(f"wandb {wandb_project} run {wandb_run}")
wandb.login(host='https://stability.wandb.io')#, relogin=True)
wandb_config = {
"model_name": model_name,
"batch_size": batch_size,
"num_epochs": num_epochs,
"use_image_aug": use_image_aug,
"max_lr": max_lr,
"lr_scheduler_type": lr_scheduler_type,
"mixup_pct": mixup_pct,
"num_train": num_train,
"num_test": num_test,
"seed": seed,
"distributed": distributed,
"num_devices": num_devices,
"world_size": world_size,
}
print("wandb_config:\n",wandb_config)
if False: # wandb_auto_resume
print("wandb_id:",model_name)
wandb.init(
id = model_name,
project=wandb_project,
name=wandb_run,
config=wandb_config,
notes=wandb_notes,
resume="allow",
)
else:
wandb.init(
project=wandb_project,
name=model_name,
config=wandb_config,
notes=wandb_notes,
)
else:
wandb_log = False
# using the same preprocessing as was used in MindEye + BrainDiffuser
pixcorr_preprocess = transforms.Compose([
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr(images,brains):
# Flatten images while keeping the batch dimension
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
return corrmean
# # Main
# In[15]:
epoch = 0
losses, test_losses, lrs = [], [], []
best_test_loss = 1e9
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
# Optionally resume from checkpoint #
resume_from_ckpt = False
if resume_from_ckpt:
print("\n---resuming from last.pth ckpt---\n")
try:
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
except:
print('last.pth failed... trying last_backup.pth')
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
epoch = checkpoint['epoch']
print("Epoch",epoch)
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
del checkpoint
elif False:
if wandb.run.resumed:
print("\n---resuming from last.pth ckpt---\n")
try:
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
except:
print('last.pth failed... trying last_backup.pth')
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
epoch = checkpoint['epoch']
print("Epoch",epoch)
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
del checkpoint
torch.cuda.empty_cache()
# In[16]:
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
model, optimizer, train_dl, test_dl, lr_scheduler
)
# In[17]:
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
test_image, test_voxel = None, None
mse = nn.MSELoss()
for epoch in progress_bar:
model.train()
fwd_percent_correct = 0.
bwd_percent_correct = 0.
test_fwd_percent_correct = 0.
test_bwd_percent_correct = 0.
loss_clip_total = 0.
loss_blurry_total = 0.
test_loss_clip_total = 0.
test_loss_blurry_total = 0.
blurry_pixcorr = 0.
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
with torch.cuda.amp.autocast():
optimizer.zero_grad()
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
image = images[behav[:,0,0].cpu().long()].to(device).float()
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
if use_image_aug: image = img_augment(image)
clip_target = clip_model.embed_image(image)
assert not torch.any(torch.isnan(clip_target))
if epoch < int(mixup_pct * num_epochs):
voxel, perm, betas, select = utils.mixco(voxel)
voxel_ridge = model.ridge(voxel)
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
if epoch < int(mixup_pct * num_epochs):
loss_clip = utils.mixco_nce(
clip_voxels_norm,
clip_target_norm,
temp=.006,
perm=perm, betas=betas, select=select)
else:
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
loss_clip = utils.soft_clip_loss(
clip_voxels_norm,
clip_target_norm,
temp=epoch_temp)
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
loss_clip_total += loss_clip.item()
loss_blurry_total += loss_blurry.item()
loss = loss_blurry + loss_clip
utils.check_loss(loss)
accelerator.backward(loss)
optimizer.step()
losses.append(loss.item())
lrs.append(optimizer.param_groups[0]['lr'])
# forward and backward top 1 accuracy
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
with torch.no_grad():
# only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
random_samps = np.random.choice(np.arange(len(voxel)), size=2, replace=False)
blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
if lr_scheduler_type is not None:
lr_scheduler.step()
model.eval()
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
with torch.cuda.amp.autocast():
with torch.no_grad():
# all test samples should be loaded per batch such that test_i should never exceed 0
if len(behav) != num_test: print("!",len(behav),num_test)
## Average same-image repeats ##
if test_image is None:
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
image = behav[:,0,0].cpu().long()
unique_image, sort_indices = torch.unique(image, return_inverse=True)
for im in unique_image:
locs = torch.where(im == image)[0]
if test_image is None:
test_image = images[im][None]
test_voxel = torch.mean(voxel[locs],axis=0)[None]
else:
test_image = torch.vstack((test_image, images[im][None]))
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
# sample of batch_size
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
voxel = test_voxel[random_indices].to(device)
image = test_image[random_indices].to(device)
assert len(image) == batch_size
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
clip_target = clip_model.embed_image(image.float())
voxel_ridge = model.ridge(voxel)
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
loss_clip = utils.soft_clip_loss(
clip_voxels_norm,
clip_target_norm,
temp=.006)
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
loss = loss_blurry + loss_clip
utils.check_loss(loss)
test_losses.append(loss.item())
# forward and backward top 1 accuracy
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
# halving the batch size because the decoder is computationally heavy
blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
# transform blurry recon latents to images and plot it
fig, axes = plt.subplots(1, 4, figsize=(8, 4))
axes[0].imshow(utils.torch_to_Image(image[[0]]))
axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
axes[2].imshow(utils.torch_to_Image(image[[1]]))
axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
plt.show()
if local_rank==0:
# if utils.is_interactive(): clear_output(wait=True)
assert (test_i+1) == 1
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
"test/loss": np.mean(test_losses[-(test_i+1):]),
"train/lr": lrs[-1],
"train/num_steps": len(losses),
"test/num_steps": len(test_losses),
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
"train/loss_clip_total": loss_clip_total / (train_i + 1),
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
}
progress_bar.set_postfix(**logs)
# Save model checkpoint and reconstruct
if epoch % ckpt_interval == 0:
if not utils.is_interactive():
save_ckpt(f'last')
if wandb_log: wandb.log(logs)
# wait for other GPUs to catch up if needed
accelerator.wait_for_everyone()
torch.cuda.empty_cache()
gc.collect()
print("\n===Finished!===\n")
if ckpt_saving:
save_ckpt(f'last')
if not utils.is_interactive():
sys.exit(0) |