Matej Klemen
commited on
Commit
•
40603e9
1
Parent(s):
2344e98
Add model files
Browse files- classes.json +15 -0
- config.json +57 -0
- label_thresholds.json +14 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +19 -0
- tokenizer.json +0 -0
- tokenizer_config.json +26 -0
- train.log +153 -0
classes.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"LOWER_OTHER": 0,
|
3 |
+
"LOWER_HYPERCORRECTION": 1,
|
4 |
+
"LOWER_ADJ_SKI": 2,
|
5 |
+
"LOWER_ENTITY_PART": 3,
|
6 |
+
"UPPER_OTHER": 4,
|
7 |
+
"UPPER_BEGIN": 5,
|
8 |
+
"UPPER_ENTITY": 6,
|
9 |
+
"UPPER_DIRECT_SPEECH": 7,
|
10 |
+
"UPPER_ADJ_OTHER": 8,
|
11 |
+
"UPPER_ALLUC_OTHER": 9,
|
12 |
+
"UPPER_ALLUC_BEGIN": 10,
|
13 |
+
"UPPER_ALLUC_ENTITY": 11,
|
14 |
+
"UNCAP": -100
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EMBEDDIA/sloberta",
|
3 |
+
"architectures": [
|
4 |
+
"CamembertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "LABEL_0",
|
16 |
+
"1": "LABEL_1",
|
17 |
+
"2": "LABEL_2",
|
18 |
+
"3": "LABEL_3",
|
19 |
+
"4": "LABEL_4",
|
20 |
+
"5": "LABEL_5",
|
21 |
+
"6": "LABEL_6",
|
22 |
+
"7": "LABEL_7",
|
23 |
+
"8": "LABEL_8",
|
24 |
+
"9": "LABEL_9",
|
25 |
+
"10": "LABEL_10",
|
26 |
+
"11": "LABEL_11"
|
27 |
+
},
|
28 |
+
"initializer_range": 0.02,
|
29 |
+
"intermediate_size": 3072,
|
30 |
+
"label2id": {
|
31 |
+
"LABEL_0": 0,
|
32 |
+
"LABEL_1": 1,
|
33 |
+
"LABEL_10": 10,
|
34 |
+
"LABEL_11": 11,
|
35 |
+
"LABEL_2": 2,
|
36 |
+
"LABEL_3": 3,
|
37 |
+
"LABEL_4": 4,
|
38 |
+
"LABEL_5": 5,
|
39 |
+
"LABEL_6": 6,
|
40 |
+
"LABEL_7": 7,
|
41 |
+
"LABEL_8": 8,
|
42 |
+
"LABEL_9": 9
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-05,
|
45 |
+
"max_position_embeddings": 514,
|
46 |
+
"model_type": "camembert",
|
47 |
+
"num_attention_heads": 12,
|
48 |
+
"num_hidden_layers": 12,
|
49 |
+
"pad_token_id": 1,
|
50 |
+
"position_embedding_type": "absolute",
|
51 |
+
"problem_type": "multi_label_classification",
|
52 |
+
"torch_dtype": "float32",
|
53 |
+
"transformers_version": "4.25.1",
|
54 |
+
"type_vocab_size": 1,
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 32005
|
57 |
+
}
|
label_thresholds.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
0.45,
|
3 |
+
0.58,
|
4 |
+
0.481,
|
5 |
+
0.433,
|
6 |
+
0.446,
|
7 |
+
0.469,
|
8 |
+
0.503,
|
9 |
+
0.417,
|
10 |
+
0.508,
|
11 |
+
0.485,
|
12 |
+
0.517,
|
13 |
+
0.449
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5437a8fb2bcac05130f79e9525699fc30045d478ead488f0ec6cab06ad72a3c
|
3 |
+
size 440233393
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34b589385a2320549143ab23b0ccf82cc99a82685701cdabe0fad847bd0479ff
|
3 |
+
size 800013
|
special_tokens_map.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<s>NOTUSED",
|
4 |
+
"</s>NOTUSED"
|
5 |
+
],
|
6 |
+
"bos_token": "<s>",
|
7 |
+
"cls_token": "<s>",
|
8 |
+
"eos_token": "</s>",
|
9 |
+
"mask_token": {
|
10 |
+
"content": "<mask>",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"sep_token": "</s>",
|
18 |
+
"unk_token": "<unk>"
|
19 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<s>NOTUSED",
|
4 |
+
"</s>NOTUSED"
|
5 |
+
],
|
6 |
+
"bos_token": "<s>",
|
7 |
+
"cls_token": "<s>",
|
8 |
+
"do_lower_case": false,
|
9 |
+
"eos_token": "</s>",
|
10 |
+
"mask_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<mask>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"model_max_length": 512,
|
19 |
+
"name_or_path": "EMBEDDIA/sloberta",
|
20 |
+
"pad_token": "<pad>",
|
21 |
+
"sep_token": "</s>",
|
22 |
+
"sp_model_kwargs": {},
|
23 |
+
"special_tokens_map_file": null,
|
24 |
+
"tokenizer_class": "CamembertTokenizer",
|
25 |
+
"unk_token": "<unk>"
|
26 |
+
}
|
train.log
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-02-22 10:29:59,083 [INFO ] |experiment_dir |gigafida_multi_case_fg_sloberta256 |
|
2 |
+
2023-02-22 10:29:59,083 [INFO ] |train_path |...an-publishers-mala-velika-multilabel/train.json|
|
3 |
+
2023-02-22 10:29:59,083 [INFO ] |dev_path |...lean-publishers-mala-velika-multilabel/dev.json|
|
4 |
+
2023-02-22 10:29:59,083 [INFO ] |pretrained_name_or_path |EMBEDDIA/sloberta |
|
5 |
+
2023-02-22 10:29:59,083 [INFO ] |max_length |256 |
|
6 |
+
2023-02-22 10:29:59,083 [INFO ] |num_epochs |3 |
|
7 |
+
2023-02-22 10:29:59,083 [INFO ] |learning_rate |2e-05 |
|
8 |
+
2023-02-22 10:29:59,083 [INFO ] |batch_size |32 |
|
9 |
+
2023-02-22 10:29:59,083 [INFO ] |validate_every_n_steps |300000 |
|
10 |
+
2023-02-22 10:29:59,084 [INFO ] |early_stopping_rounds |999 |
|
11 |
+
2023-02-22 10:29:59,084 [INFO ] |input_column |words_lc |
|
12 |
+
2023-02-22 10:29:59,084 [INFO ] |target_column |case |
|
13 |
+
2023-02-22 10:29:59,084 [INFO ] |class_encoding_path |...-publishers-mala-velika-multilabel/classes.json|
|
14 |
+
2023-02-22 10:29:59,084 [INFO ] |use_cpu |False |
|
15 |
+
2023-02-22 10:29:59,084 [INFO ] Using class encoding:
|
16 |
+
{
|
17 |
+
"LOWER_OTHER": 0,
|
18 |
+
"LOWER_HYPERCORRECTION": 1,
|
19 |
+
"LOWER_ADJ_SKI": 2,
|
20 |
+
"LOWER_ENTITY_PART": 3,
|
21 |
+
"UPPER_OTHER": 4,
|
22 |
+
"UPPER_BEGIN": 5,
|
23 |
+
"UPPER_ENTITY": 6,
|
24 |
+
"UPPER_DIRECT_SPEECH": 7,
|
25 |
+
"UPPER_ADJ_OTHER": 8,
|
26 |
+
"UPPER_ALLUC_OTHER": 9,
|
27 |
+
"UPPER_ALLUC_BEGIN": 10,
|
28 |
+
"UPPER_ALLUC_ENTITY": 11,
|
29 |
+
"UNCAP": -100
|
30 |
+
}
|
31 |
+
2023-02-22 13:34:10,808 [INFO ] Loaded 2652880 training examples, 166737 validation examples.
|
32 |
+
2023-02-22 13:34:10,912 [INFO ] Epoch #1
|
33 |
+
2023-02-22 13:34:10,913 [INFO ] Subset #1
|
34 |
+
2023-02-22 14:52:36,449 [INFO ] Training loss: 0.0271
|
35 |
+
2023-02-22 15:10:55,902 [INFO ] Dev macro F1 = 0.8745
|
36 |
+
2023-02-22 15:10:55,903 [INFO ] New best macro F1 = 0.8745
|
37 |
+
([0.995, 0.7376, 0.9809, 0.7119, 0.643, 0.9873, 0.9536, 0.9807, 0.9202, 0.7135, 0.9679, 0.9025]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
38 |
+
2023-02-22 15:10:57,034 [INFO ] Subset #2
|
39 |
+
2023-02-22 16:29:16,755 [INFO ] Training loss: 0.0174
|
40 |
+
2023-02-22 16:47:35,042 [INFO ] Dev macro F1 = 0.8908
|
41 |
+
2023-02-22 16:47:35,043 [INFO ] New best macro F1 = 0.8908
|
42 |
+
([0.9956, 0.7957, 0.9821, 0.7471, 0.6683, 0.9887, 0.9579, 0.9832, 0.9285, 0.756, 0.9706, 0.9165]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
43 |
+
2023-02-22 16:47:36,125 [INFO ] Subset #3
|
44 |
+
2023-02-22 18:05:55,544 [INFO ] Training loss: 0.0139
|
45 |
+
2023-02-22 18:24:12,701 [INFO ] Dev macro F1 = 0.8978
|
46 |
+
2023-02-22 18:24:12,702 [INFO ] New best macro F1 = 0.8978
|
47 |
+
([0.9958, 0.7877, 0.9835, 0.7566, 0.6912, 0.9891, 0.9604, 0.9836, 0.9317, 0.7991, 0.974, 0.9208]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
48 |
+
2023-02-22 18:24:13,804 [INFO ] Subset #4
|
49 |
+
2023-02-22 19:42:27,790 [INFO ] Training loss: 0.0121
|
50 |
+
2023-02-22 20:00:41,833 [INFO ] Dev macro F1 = 0.9007
|
51 |
+
2023-02-22 20:00:41,834 [INFO ] New best macro F1 = 0.9007
|
52 |
+
([0.9959, 0.8197, 0.984, 0.7597, 0.6966, 0.9893, 0.9616, 0.9835, 0.9334, 0.7914, 0.9737, 0.9193]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
53 |
+
2023-02-22 20:00:43,000 [INFO ] Subset #5
|
54 |
+
2023-02-22 21:18:59,194 [INFO ] Training loss: 0.0110
|
55 |
+
2023-02-22 21:37:11,791 [INFO ] Dev macro F1 = 0.9038
|
56 |
+
2023-02-22 21:37:11,792 [INFO ] New best macro F1 = 0.9038
|
57 |
+
([0.9961, 0.8296, 0.9838, 0.7709, 0.6851, 0.9899, 0.9623, 0.9813, 0.9343, 0.8091, 0.9761, 0.9268]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
58 |
+
2023-02-22 21:37:12,829 [INFO ] Subset #6
|
59 |
+
2023-02-22 22:55:32,855 [INFO ] Training loss: 0.0102
|
60 |
+
2023-02-22 23:13:49,305 [INFO ] Dev macro F1 = 0.9084
|
61 |
+
2023-02-22 23:13:49,306 [INFO ] New best macro F1 = 0.9084
|
62 |
+
([0.9961, 0.8353, 0.9846, 0.7777, 0.713, 0.9898, 0.9635, 0.9847, 0.9374, 0.8131, 0.9764, 0.9293]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
63 |
+
2023-02-22 23:13:50,334 [INFO ] Subset #7
|
64 |
+
2023-02-23 00:32:18,993 [INFO ] Training loss: 0.0096
|
65 |
+
2023-02-23 00:50:32,151 [INFO ] Dev macro F1 = 0.9085
|
66 |
+
2023-02-23 00:50:32,151 [INFO ] New best macro F1 = 0.9085
|
67 |
+
([0.9961, 0.8392, 0.9849, 0.7667, 0.7116, 0.9899, 0.9639, 0.9852, 0.9376, 0.8197, 0.9774, 0.9299]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
68 |
+
2023-02-23 00:50:33,174 [INFO ] Subset #8
|
69 |
+
2023-02-23 02:08:49,459 [INFO ] Training loss: 0.0092
|
70 |
+
2023-02-23 02:27:04,519 [INFO ] Dev macro F1 = 0.9106
|
71 |
+
2023-02-23 02:27:04,521 [INFO ] New best macro F1 = 0.9106
|
72 |
+
([0.9963, 0.8464, 0.9853, 0.7808, 0.7133, 0.99, 0.9645, 0.9851, 0.9372, 0.8192, 0.9771, 0.9321]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
73 |
+
2023-02-23 02:27:05,553 [INFO ] Subset #9
|
74 |
+
2023-02-23 03:33:09,800 [INFO ] Training loss: 0.0089
|
75 |
+
2023-02-23 03:51:29,228 [INFO ] Dev macro F1 = 0.9117
|
76 |
+
2023-02-23 03:51:29,228 [INFO ] New best macro F1 = 0.9117
|
77 |
+
([0.9963, 0.8437, 0.9852, 0.7787, 0.7232, 0.9901, 0.9643, 0.9851, 0.9391, 0.8272, 0.9777, 0.9298]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
78 |
+
2023-02-23 03:51:30,347 [INFO ] Epoch #2
|
79 |
+
2023-02-23 03:51:30,347 [INFO ] Subset #1
|
80 |
+
2023-02-23 05:09:58,233 [INFO ] Training loss: 0.0052
|
81 |
+
2023-02-23 05:28:16,763 [INFO ] Dev macro F1 = 0.9133
|
82 |
+
2023-02-23 05:28:16,763 [INFO ] New best macro F1 = 0.9133
|
83 |
+
([0.9963, 0.8438, 0.9854, 0.7847, 0.7282, 0.99, 0.9647, 0.9855, 0.9393, 0.8333, 0.9776, 0.9303]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
84 |
+
2023-02-23 05:28:17,805 [INFO ] Subset #2
|
85 |
+
2023-02-23 06:46:44,412 [INFO ] Training loss: 0.0052
|
86 |
+
2023-02-23 07:04:59,668 [INFO ] Dev macro F1 = 0.9145
|
87 |
+
2023-02-23 07:04:59,668 [INFO ] New best macro F1 = 0.9145
|
88 |
+
([0.9963, 0.8482, 0.9857, 0.7795, 0.7377, 0.99, 0.9652, 0.9852, 0.9405, 0.8362, 0.9778, 0.9312]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
89 |
+
2023-02-23 07:05:00,671 [INFO ] Subset #3
|
90 |
+
2023-02-23 08:23:23,919 [INFO ] Training loss: 0.0052
|
91 |
+
2023-02-23 08:41:39,100 [INFO ] Dev macro F1 = 0.9148
|
92 |
+
2023-02-23 08:41:39,101 [INFO ] New best macro F1 = 0.9148
|
93 |
+
([0.9962, 0.8421, 0.9853, 0.7931, 0.7393, 0.9901, 0.9652, 0.9851, 0.9392, 0.8313, 0.9772, 0.9331]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
94 |
+
2023-02-23 08:41:40,114 [INFO ] Subset #4
|
95 |
+
2023-02-23 10:00:17,635 [INFO ] Training loss: 0.0052
|
96 |
+
2023-02-23 10:18:31,362 [INFO ] Dev macro F1 = 0.9161
|
97 |
+
2023-02-23 10:18:31,362 [INFO ] New best macro F1 = 0.9161
|
98 |
+
([0.9964, 0.851, 0.9857, 0.7905, 0.7375, 0.9902, 0.966, 0.9853, 0.9413, 0.8361, 0.9779, 0.9347]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
99 |
+
2023-02-23 10:18:32,356 [INFO ] Subset #5
|
100 |
+
2023-02-23 11:36:54,299 [INFO ] Training loss: 0.0052
|
101 |
+
2023-02-23 11:55:05,378 [INFO ] Dev macro F1 = 0.9147
|
102 |
+
2023-02-23 11:55:05,379 [INFO ] Subset #6
|
103 |
+
2023-02-23 13:13:16,174 [INFO ] Training loss: 0.0052
|
104 |
+
2023-02-23 13:31:28,612 [INFO ] Dev macro F1 = 0.9139
|
105 |
+
2023-02-23 13:31:28,613 [INFO ] Subset #7
|
106 |
+
2023-02-23 14:49:40,826 [INFO ] Training loss: 0.0052
|
107 |
+
2023-02-23 15:07:51,390 [INFO ] Dev macro F1 = 0.9159
|
108 |
+
2023-02-23 15:07:51,390 [INFO ] Subset #8
|
109 |
+
2023-02-23 16:25:51,975 [INFO ] Training loss: 0.0052
|
110 |
+
2023-02-23 16:44:06,088 [INFO ] Dev macro F1 = 0.9163
|
111 |
+
2023-02-23 16:44:06,089 [INFO ] New best macro F1 = 0.9163
|
112 |
+
([0.9963, 0.8482, 0.9861, 0.7968, 0.7263, 0.9904, 0.9654, 0.9859, 0.9423, 0.8414, 0.979, 0.9371]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
113 |
+
2023-02-23 16:44:07,077 [INFO ] Subset #9
|
114 |
+
2023-02-23 17:49:59,943 [INFO ] Training loss: 0.0052
|
115 |
+
2023-02-23 18:08:12,023 [INFO ] Dev macro F1 = 0.9175
|
116 |
+
2023-02-23 18:08:12,024 [INFO ] New best macro F1 = 0.9175
|
117 |
+
([0.9965, 0.8428, 0.9859, 0.7962, 0.7459, 0.9904, 0.967, 0.9854, 0.9427, 0.8409, 0.9785, 0.9373]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
118 |
+
2023-02-23 18:08:13,106 [INFO ] Epoch #3
|
119 |
+
2023-02-23 18:08:13,107 [INFO ] Subset #1
|
120 |
+
2023-02-23 19:26:19,659 [INFO ] Training loss: 0.0042
|
121 |
+
2023-02-23 19:44:30,411 [INFO ] Dev macro F1 = 0.9180
|
122 |
+
2023-02-23 19:44:30,412 [INFO ] New best macro F1 = 0.9180
|
123 |
+
([0.9964, 0.8528, 0.9858, 0.7957, 0.7448, 0.9903, 0.9662, 0.9849, 0.9417, 0.8425, 0.9784, 0.9365]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
124 |
+
2023-02-23 19:44:31,428 [INFO ] Subset #2
|
125 |
+
2023-02-23 21:02:32,847 [INFO ] Training loss: 0.0042
|
126 |
+
2023-02-23 21:20:42,523 [INFO ] Dev macro F1 = 0.9171
|
127 |
+
2023-02-23 21:20:42,523 [INFO ] Subset #3
|
128 |
+
2023-02-23 22:38:50,203 [INFO ] Training loss: 0.0043
|
129 |
+
2023-02-23 22:57:02,020 [INFO ] Dev macro F1 = 0.9191
|
130 |
+
2023-02-23 22:57:02,020 [INFO ] New best macro F1 = 0.9191
|
131 |
+
([0.9964, 0.8509, 0.9858, 0.7998, 0.7527, 0.9903, 0.9666, 0.9855, 0.9421, 0.8418, 0.9791, 0.9379]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
132 |
+
2023-02-23 22:57:03,088 [INFO ] Subset #4
|
133 |
+
2023-02-24 00:15:28,073 [INFO ] Training loss: 0.0043
|
134 |
+
2023-02-24 00:33:40,728 [INFO ] Dev macro F1 = 0.9189
|
135 |
+
2023-02-24 00:33:40,729 [INFO ] Subset #5
|
136 |
+
2023-02-24 01:52:05,939 [INFO ] Training loss: 0.0043
|
137 |
+
2023-02-24 02:10:18,483 [INFO ] Dev macro F1 = 0.9184
|
138 |
+
2023-02-24 02:10:18,484 [INFO ] Subset #6
|
139 |
+
2023-02-24 03:28:31,701 [INFO ] Training loss: 0.0043
|
140 |
+
2023-02-24 03:46:44,872 [INFO ] Dev macro F1 = 0.9199
|
141 |
+
2023-02-24 03:46:44,873 [INFO ] New best macro F1 = 0.9199
|
142 |
+
([0.9965, 0.8544, 0.9862, 0.7997, 0.7532, 0.9905, 0.967, 0.9849, 0.943, 0.8459, 0.9797, 0.9384]), using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
143 |
+
2023-02-24 03:46:45,868 [INFO ] Subset #7
|
144 |
+
2023-02-24 05:04:57,214 [INFO ] Training loss: 0.0043
|
145 |
+
2023-02-24 05:23:09,199 [INFO ] Dev macro F1 = 0.9177
|
146 |
+
2023-02-24 05:23:09,200 [INFO ] Subset #8
|
147 |
+
2023-02-24 06:41:25,821 [INFO ] Training loss: 0.0043
|
148 |
+
2023-02-24 06:59:39,709 [INFO ] Dev macro F1 = 0.9190
|
149 |
+
2023-02-24 06:59:39,710 [INFO ] Subset #9
|
150 |
+
2023-02-24 08:05:25,875 [INFO ] Training loss: 0.0043
|
151 |
+
2023-02-24 08:23:40,031 [INFO ] Dev macro F1 = 0.9184
|
152 |
+
2023-02-24 08:23:40,031 [INFO ] Training took 154169.21s
|
153 |
+
2023-02-24 08:23:40,031 [INFO ] Best dev F1: 0.9199, using thresholds: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|