Commit
·
b568522
1
Parent(s):
5051d7c
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,82 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- cjvt/sentinews
|
5 |
+
language:
|
6 |
+
- sl
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
model-index:
|
10 |
+
- name: sloberta-sentinews-sentence
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-classification
|
14 |
+
name: Sentiment classification
|
15 |
+
dataset:
|
16 |
+
type: cjvt/sentinews
|
17 |
+
name: SentiNews
|
18 |
+
config: sentence_level
|
19 |
+
metrics:
|
20 |
+
- type: f1
|
21 |
+
value: 0.6934678744913757
|
22 |
+
name: Validation macro F1
|
23 |
+
|
24 |
---
|
25 |
+
|
26 |
+
# sloberta-sentinews-sentence
|
27 |
+
|
28 |
+
Slovenian 3-class sentiment classifier - [SloBERTa](https://huggingface.co/EMBEDDIA/sloberta) fine-tuned on the sentence-level config of the
|
29 |
+
SentiNews dataset.
|
30 |
+
|
31 |
+
The model is intended as:
|
32 |
+
(1) an out-of-the box sentence-level sentiment classifier or
|
33 |
+
(2) a sentence-level sentiment classification baseline.
|
34 |
+
|
35 |
+
## Fine-tuning details
|
36 |
+
The model was fine-tuned on a random 90%/5%/5% train-val-test split of the `sentence_level` configuration of the [cjvt/sentinews](https://huggingface.co/datasets/cjvt/sentinews) dataset
|
37 |
+
using the following hyperparameters:
|
38 |
+
```
|
39 |
+
max_length = 79 # 99th percentile of encoded training sequences, sequences are padded/truncated to this length
|
40 |
+
batch_size = 128
|
41 |
+
optimizer = "adamw_torch"
|
42 |
+
learning_rate = 2e-5
|
43 |
+
num_epochs = 10
|
44 |
+
validation_metric = "macro_f1"
|
45 |
+
```
|
46 |
+
|
47 |
+
Feel free to inspect `training_args.bin` for more details.
|
48 |
+
|
49 |
+
If you wish to directly compare your model to this one, you should use the same split as this model. To do so, use the following code:
|
50 |
+
```python
|
51 |
+
import json
|
52 |
+
import datasets
|
53 |
+
|
54 |
+
# You can find split_indices.json in the 'Files and versions' tab
|
55 |
+
with open("split_indices.json", "r") as f_split:
|
56 |
+
split = json.load(f_split)
|
57 |
+
|
58 |
+
data = datasets.load_dataset("cjvt/sentinews", "sentence_level", split="train")
|
59 |
+
train_data = data.select(split["train_indices"])
|
60 |
+
dev_data = data.select(split["dev_indices"])
|
61 |
+
test_data = data.select(split["test_indices"])
|
62 |
+
```
|
63 |
+
|
64 |
+
## Evaluation results
|
65 |
+
|
66 |
+
Best validation results:
|
67 |
+
```
|
68 |
+
{
|
69 |
+
"eval_accuracy": 0.7207815275310835,
|
70 |
+
"eval_f1_macro": 0.6934678744913757,
|
71 |
+
"eval_f1_negative": 0.7042136003337507,
|
72 |
+
"eval_f1_neutral": 0.759215853398679,
|
73 |
+
"eval_f1_positive": 0.6169741697416974,
|
74 |
+
"eval_loss": 0.6337869167327881,
|
75 |
+
"eval_precision_negative": 0.6685148514851486,
|
76 |
+
"eval_precision_neutral": 0.7752393385552655,
|
77 |
+
"eval_precision_positive": 0.6314199395770392,
|
78 |
+
"eval_recall_negative": 0.74394006170119,
|
79 |
+
"eval_recall_neutral": 0.7438413361169103,
|
80 |
+
"eval_recall_positive": 0.6031746031746031
|
81 |
+
}
|
82 |
+
```
|