--- license: apache-2.0 tags: - llava pipeline_tag: image-text-to-text --- # GGUF Quantized LLaVA 1.6 34B Updated quants and projector from [PR #5267](https://github.com/ggerganov/llama.cpp/pull/5267) ## Provided files | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [llava-v1.6-34b.Q3_K_XS.gguf](https://huggingface.co./cjpais/llava-v1.6-34B-gguf/blob/main/llava-1.6-34b.Q3_K_XS.gguf) | Q3_K_XS | 3 | 14.2 GB| very small, high quality loss | | [llava-v1.6-34b.Q3_K_M.gguf](https://huggingface.co./cjpais/llava-v1.6-34B-gguf/blob/main/llava-1.6-34b.Q3_K.gguf) | Q3_K_M | 3 | 16.7 GB| very small, high quality loss | | [llava-v1.6-34b.Q4_K_M.gguf](https://huggingface.co./cjpais/llava-v1.6-34B-gguf/blob/main/llava-v1.6-34b.Q4_K_M.gguf) | Q4_K_M | 4 | 20.66 GB| medium, balanced quality - recommended | | [llava-v1.6-34b.Q5_K_S.gguf](https://huggingface.co./cjpais/llava-v1.6-34B-gguf/blob/main/llava-1.6-34b.Q5_K_S.gguf) | Q5_K_S | 5 | 23.7 GB| large, low quality loss - recommended | | [llava-v1.6-34b.Q5_K_M.gguf](https://huggingface.co./cjpais/llava-v1.6-34B-gguf/blob/main/ggml-model-Q5_K.gguf) | Q5_K_M | 5 | 24.3 GB| large, very low quality loss - recommended |

# ORIGINAL LLaVA Model Card ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. Base LLM: [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co./NousResearch/Nous-Hermes-2-Yi-34B) **Model date:** LLaVA-v1.6-34B was trained in December 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co./NousResearch/Nous-Hermes-2-Yi-34B) license. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 500K academic-task-oriented VQA data mixture. - 50K GPT-4V data mixture. - 40K ShareGPT data. ## Evaluation dataset A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.