--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-myanmar results: [] datasets: - chuuhtetnaing/myanmar-speech-dataset-openslr-80 language: - my pipeline_tag: automatic-speech-recognition library_name: transformers --- # whisper-large-v3-myanmar This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the [chuuhtetnaing/myanmar-speech-dataset-openslr-80](https://huggingface.co./datasets/chuuhtetnaing/myanmar-speech-dataset-openslr-80) dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - Wer: 54.8976 ## Usage ```python from datasets import Audio, load_dataset from transformers import pipeline # Load a sample audio dataset = load_dataset("chuuhtetnaing/myanmar-speech-dataset-openslr-80") dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) test_dataset = dataset['test'] input_speech = test_dataset[42]['audio'] pipe = pipeline(model='chuuhtetnaing/whisper-large-v3-myanmar') output = pipe(input_speech, generate_kwargs={"language": "myanmar", "task": "transcribe"}) print(output['text']) # ကျမ ပြည်ပ မှာ ပညာသင် တော့ စာမေးပွဲ ကို တပတ်တခါ စစ်တယ် ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 60 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9771 | 1.0 | 42 | 0.7598 | 100.0 | | 0.3477 | 2.0 | 84 | 0.2140 | 89.8931 | | 0.2244 | 3.0 | 126 | 0.1816 | 79.0294 | | 0.1287 | 4.0 | 168 | 0.1510 | 71.9947 | | 0.1029 | 5.0 | 210 | 0.1575 | 77.8718 | | 0.0797 | 6.0 | 252 | 0.1315 | 70.5254 | | 0.0511 | 7.0 | 294 | 0.1143 | 70.5699 | | 0.03 | 8.0 | 336 | 0.1154 | 68.1656 | | 0.0211 | 9.0 | 378 | 0.1289 | 69.1897 | | 0.0151 | 10.0 | 420 | 0.1318 | 66.7854 | | 0.0113 | 11.0 | 462 | 0.1478 | 69.1451 | | 0.0079 | 12.0 | 504 | 0.1484 | 66.2066 | | 0.0053 | 13.0 | 546 | 0.1389 | 65.0935 | | 0.0031 | 14.0 | 588 | 0.1479 | 64.3811 | | 0.0014 | 15.0 | 630 | 0.1611 | 64.8264 | | 0.001 | 16.0 | 672 | 0.1627 | 63.3571 | | 0.0012 | 17.0 | 714 | 0.1546 | 65.0045 | | 0.0006 | 18.0 | 756 | 0.1566 | 64.5147 | | 0.0006 | 20.0 | 760 | 0.1581 | 64.6928 | | 0.0002 | 21.0 | 798 | 0.1621 | 63.9804 | | 0.0003 | 22.0 | 836 | 0.1664 | 60.8638 | | 0.0002 | 23.0 | 874 | 0.1663 | 58.5040 | | 0.0 | 24.0 | 912 | 0.1699 | 55.8326 | | 0.0 | 25.0 | 950 | 0.1715 | 55.0312 | | 0.0 | 26.0 | 988 | 0.1730 | 54.9866 | | 0.0 | 27.0 | 1026 | 0.1740 | 54.8976 | | 0.0 | 28.0 | 1064 | 0.1747 | 54.8976 | | 0.0 | 29.0 | 1102 | 0.1751 | 54.8976 | | 0.0 | 30.0 | 1140 | 0.1752 | 54.8976 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.15.1