--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - wmt16 metrics: - rouge - sacrebleu model-index: - name: mt5_small_wmt16_de_en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: de-en split: validation args: de-en metrics: - name: Rouge1 type: rouge value: 0.3666 - name: Sacrebleu type: sacrebleu value: 6.4622 --- # mt5_small_wmt16_de_en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 2.4612 - Rouge1: 0.3666 - Rouge2: 0.147 - Rougel: 0.3362 - Sacrebleu: 6.4622 ## Model description Multilingual T5 (mT5) is a massively multilingual pretrained text-to-text transformer model, trained following a similar recipe as T5. ## Intended uses & limitations This is tried to be familiarized with the mt5 model in order to use it for the translation of English to Korean. ## Training and evaluation data This work was done as an exercise for English-Korean translation, so I trained by selecting only very small part of a very large original dataset. Therefore, the quality is not expected to be very good. 이 일은 영어 한국어 번역을 위한 연습으로 한 것이기 때문에 매우 큰 원 dataset에서 아주 작은 크기만의 글뭉치만 선택을 해서 훈련을 했다. 따라서 질은 그리 좋지 않을 것으로 예상된다. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.3059 | 1.6 | 500 | 2.5597 | 0.3398 | 0.1261 | 0.3068 | 5.5524 | | 2.4093 | 3.2 | 1000 | 2.4996 | 0.3609 | 0.144 | 0.3304 | 6.2002 | | 2.2322 | 4.8 | 1500 | 2.4612 | 0.3666 | 0.147 | 0.3362 | 6.4622 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3