File size: 1,359 Bytes
68ef990 c4c5f7b a7de615 9f34d59 754d1f7 9f34d59 754d1f7 9f34d59 68ef990 c0aaf9b 35c2a17 d96ac82 c0aaf9b fa54530 d96ac82 c0aaf9b 7f72575 9a088d1 7f72575 9051e5d d96ac82 ca8179a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
pipeline_tag: text-generation
license: apache-2.0
language:
- en
tags:
- SOLAR-10.7B-v1.0
- Open-platypus-Commercial
base_model: upstage/SOLAR-10.7B-v1.0
datasets:
- kyujinpy/Open-platypus-Commercial
model-index:
- name: T3Q-platypus-SOLAR-10.7B-v1.0
results: []
---
Update @ 2024.03.07
## T3Q-platypus-SOLAR-10.7B-v1.0
This model is a fine-tuned version of upstage/SOLAR-10.7B-v1.0
**Model Developers** Chihoon Lee(chlee10), T3Q
## Training hyperparameters
The following hyperparameters were used during training:
```python
# ๋ฐ์ดํฐ์
๊ณผ ํ๋ จ ํ์์ ๊ด๋ จ๋ ํ์ดํผ ํ๋ผ๋ฏธํฐ
batch_size = 16
num_epochs = 1
micro_batch = 1
gradient_accumulation_steps = batch_size // micro_batch
# ํ๋ จ ๋ฐฉ๋ฒ์ ๋ํ ํ์ดํผ ํ๋ผ๋ฏธํฐ
cutoff_len = 4096
lr_scheduler = 'cosine'
warmup_ratio = 0.06 # warmup_steps = 100
learning_rate = 4e-4
optimizer = 'adamw_torch'
weight_decay = 0.01
max_grad_norm = 1.0
# LoRA config
lora_r = 16
lora_alpha = 16
lora_dropout = 0.05
lora_target_modules = ["gate_proj", "down_proj", "up_proj"]
# Tokenizer์์ ๋์ค๋ input๊ฐ ์ค์ ์ต์
train_on_inputs = False
add_eos_token = False
# NEFTune params
noise_alpha: int = 5
```
## Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.13.0
- Tokenizers 0.14.1 |