chitanda commited on
Commit
bf8136f
·
verified ·
1 Parent(s): f614bb6

Add files using upload-large-folder tool

Browse files
Files changed (34) hide show
  1. llava-v1.6-13b-unk-vqa-v1.1/checkpoint-100/model-00005-of-00006.safetensors +3 -0
  2. llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00001-of-00006.safetensors +3 -0
  3. llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00002-of-00006.safetensors +3 -0
  4. llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00003-of-00006.safetensors +3 -0
  5. llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00004-of-00006.safetensors +3 -0
  6. llava-v1.6-13b-unk-vqa-v1.1/checkpoint-200/model-00006-of-00006.safetensors +3 -0
  7. llava-v1.6-13b-unk-vqa-v1.1/model-00002-of-00006.safetensors +3 -0
  8. llava-v1.6-13b-unk-vqa-v1.1/model-00004-of-00006.safetensors +3 -0
  9. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/config.json +70 -0
  10. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/generation_config.json +6 -0
  11. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/latest +1 -0
  12. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/model.safetensors.index.json +694 -0
  13. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_0.pth +3 -0
  14. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_1.pth +3 -0
  15. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_2.pth +3 -0
  16. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_3.pth +3 -0
  17. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_4.pth +3 -0
  18. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_5.pth +3 -0
  19. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_6.pth +3 -0
  20. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_7.pth +3 -0
  21. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/scheduler.pt +3 -0
  22. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/special_tokens_map.json +24 -0
  23. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/tokenizer.model +3 -0
  24. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/tokenizer_config.json +44 -0
  25. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/trainer_state.json +3021 -0
  26. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/training_args.bin +3 -0
  27. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_3_0.jsonl +0 -0
  28. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_3_1.jsonl +0 -0
  29. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_3_2.jsonl +0 -0
  30. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_merge.jsonl +0 -0
  31. llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/zero_to_fp32.py +587 -0
  32. llava-v1.6-mistral-7b-unk-vqa-v1.1/generation_config.json +6 -0
  33. llava-v1.6-mistral-7b-unk-vqa-v1.1/model-00004-of-00004.safetensors +3 -0
  34. llava-v1.6-mistral-7b-unk-vqa-v1.1/trainer_state.json +3150 -0
llava-v1.6-13b-unk-vqa-v1.1/checkpoint-100/model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da135efccfbe169c67add697ec23f2a800e37d8ffbf30cc6091fda9b51eb8529
3
+ size 4933722216
llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e6c108eb2709c5d2e6fea123e5d40624aadca4847f898b06d7a10fce2e4a85
3
+ size 4978276128
llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f92a2cc3877cd2692fc9d91822412dff4c67e71f781fff153900d3e3500af761
3
+ size 4970422232
llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66fc66e0aaeb848019c80e7d019b6c309a95fcda7e88ee535b457fc4b41ba94a
3
+ size 4970422256
llava-v1.6-13b-unk-vqa-v1.1/checkpoint-1000/model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e960d7d5f3cf8cfacf6c9e9671cc1a0d542755fc4b12f1ab764abf28bcb802ed
3
+ size 4933701504
llava-v1.6-13b-unk-vqa-v1.1/checkpoint-200/model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a852576a11d9705adf6a49d7c348e51d4522b7fdbdc4a99e4b9eefe0230d1e3
3
+ size 1915248664
llava-v1.6-13b-unk-vqa-v1.1/model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:435c3ba6d58291a44089ae54647c918c8f305a5637656340c49e15fea5e66484
3
+ size 4970422232
llava-v1.6-13b-unk-vqa-v1.1/model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2faa848a5e62f541965430d0dbd462cc9fd0b5d42a2967adededc1957bbab87
3
+ size 4933701504
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "freeze_mm_mlp_adapter": false,
10
+ "freeze_mm_vision_resampler": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "pad",
14
+ "image_crop_resolution": 224,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 336,
18
+ 672
19
+ ],
20
+ [
21
+ 672,
22
+ 336
23
+ ],
24
+ [
25
+ 672,
26
+ 672
27
+ ],
28
+ [
29
+ 1008,
30
+ 336
31
+ ],
32
+ [
33
+ 336,
34
+ 1008
35
+ ]
36
+ ],
37
+ "image_split_resolution": 224,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 14336,
40
+ "max_position_embeddings": 32768,
41
+ "mm_hidden_size": 1024,
42
+ "mm_patch_merge_type": "flat",
43
+ "mm_projector_lr": null,
44
+ "mm_projector_type": "mlp2x_gelu",
45
+ "mm_resampler_type": null,
46
+ "mm_use_im_patch_token": false,
47
+ "mm_use_im_start_end": false,
48
+ "mm_vision_select_feature": "patch",
49
+ "mm_vision_select_layer": -2,
50
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
51
+ "mm_vision_tower_lr": 2e-06,
52
+ "model_type": "llava_mistral",
53
+ "num_attention_heads": 32,
54
+ "num_hidden_layers": 32,
55
+ "num_key_value_heads": 8,
56
+ "rms_norm_eps": 1e-05,
57
+ "rope_theta": 1000000.0,
58
+ "sliding_window": null,
59
+ "tie_word_embeddings": false,
60
+ "tokenizer_model_max_length": 2048,
61
+ "tokenizer_padding_side": "right",
62
+ "torch_dtype": "bfloat16",
63
+ "transformers_version": "4.37.2",
64
+ "tune_mm_mlp_adapter": false,
65
+ "tune_mm_vision_resampler": false,
66
+ "unfreeze_mm_vision_tower": true,
67
+ "use_cache": false,
68
+ "use_mm_proj": true,
69
+ "vocab_size": 32000
70
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.37.2"
6
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/model.safetensors.index.json ADDED
@@ -0,0 +1,694 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15132446720
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.image_newline": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
126
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.mm_projector.0.bias": "model-00003-of-00004.safetensors",
298
+ "model.mm_projector.0.weight": "model-00003-of-00004.safetensors",
299
+ "model.mm_projector.2.bias": "model-00003-of-00004.safetensors",
300
+ "model.mm_projector.2.weight": "model-00003-of-00004.safetensors",
301
+ "model.norm.weight": "model-00003-of-00004.safetensors",
302
+ "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors",
303
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors",
304
+ "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors",
305
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors",
306
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors",
307
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors",
308
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors",
309
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors",
310
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors",
311
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors",
312
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors",
313
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
314
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
316
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
317
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
318
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
320
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
321
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors",
322
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors",
323
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors",
324
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors",
325
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors",
326
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors",
327
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors",
328
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors",
329
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
330
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
331
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
332
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
333
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
334
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
336
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors",
338
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors",
339
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors",
340
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors",
341
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors",
342
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors",
343
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors",
344
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors",
345
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
346
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
347
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
348
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
349
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
350
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
351
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
352
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
353
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors",
354
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors",
355
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors",
356
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors",
357
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors",
358
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors",
359
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors",
360
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors",
361
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
362
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
363
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
364
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
365
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
366
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
367
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
368
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
369
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors",
370
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors",
371
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors",
372
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors",
373
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors",
374
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors",
375
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors",
376
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors",
377
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
378
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
379
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
380
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
381
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
382
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
383
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
384
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
385
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors",
386
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors",
387
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors",
388
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors",
389
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors",
390
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors",
391
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors",
392
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors",
393
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
394
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
395
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
396
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
397
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
398
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
399
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
400
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
401
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors",
402
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors",
403
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors",
404
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors",
405
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors",
406
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors",
407
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors",
408
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors",
409
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
410
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
411
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
412
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
413
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
414
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
415
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
416
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
417
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors",
418
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors",
419
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors",
420
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors",
421
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors",
422
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors",
423
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors",
424
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors",
425
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
426
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
427
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
428
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
429
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
430
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
431
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
432
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
433
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors",
434
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors",
435
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors",
436
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors",
437
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors",
438
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors",
439
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors",
440
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors",
441
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
442
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
443
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
444
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
445
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
446
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
447
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
448
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
449
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors",
450
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors",
451
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors",
452
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors",
453
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors",
454
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors",
455
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors",
456
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors",
457
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
458
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
459
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
460
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
461
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
462
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
463
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
464
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
465
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors",
466
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors",
467
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors",
468
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors",
469
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors",
470
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors",
471
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors",
472
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors",
473
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
474
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
475
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
476
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
477
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
478
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
479
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
480
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
481
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors",
482
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors",
483
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors",
484
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors",
485
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors",
486
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors",
487
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors",
488
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors",
489
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
490
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
491
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
492
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
493
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
494
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
495
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
496
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
497
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors",
498
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors",
499
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors",
500
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors",
501
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
502
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors",
503
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors",
504
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors",
505
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
506
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
507
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
508
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
509
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
510
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
511
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
512
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
513
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors",
514
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors",
515
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors",
516
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors",
517
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors",
518
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors",
519
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors",
520
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors",
521
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
522
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
523
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
524
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
525
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
526
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
527
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
528
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
529
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors",
530
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors",
531
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors",
532
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors",
533
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors",
534
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors",
535
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors",
536
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors",
537
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
538
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
539
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
540
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
541
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
542
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
543
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
544
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
545
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors",
546
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors",
547
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors",
548
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors",
549
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors",
550
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors",
551
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors",
552
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors",
553
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
554
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
555
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
556
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
557
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
558
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
559
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
560
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
561
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors",
562
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors",
563
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors",
564
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors",
565
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors",
566
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors",
567
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors",
568
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors",
569
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
570
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
571
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
572
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
573
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
574
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
575
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
576
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
577
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors",
578
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors",
579
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors",
580
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors",
581
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors",
582
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors",
583
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors",
584
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors",
585
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
586
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
587
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
588
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
589
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
590
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
591
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
592
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
593
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors",
594
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors",
595
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors",
596
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors",
597
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors",
598
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors",
599
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors",
600
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors",
601
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
602
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
603
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
604
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
605
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
606
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
607
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
608
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
609
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors",
610
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors",
611
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors",
612
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors",
613
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors",
614
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors",
615
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors",
616
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors",
617
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
618
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
619
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
620
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
621
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
622
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
623
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
624
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
625
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors",
626
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors",
627
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors",
628
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors",
629
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors",
630
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors",
631
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors",
632
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors",
633
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
634
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
635
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
636
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
637
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
638
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
639
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
640
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
641
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors",
642
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors",
643
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors",
644
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors",
645
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors",
646
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors",
647
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors",
648
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors",
649
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
650
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
651
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
652
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
653
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
654
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
655
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
656
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
657
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors",
658
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors",
659
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors",
660
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors",
661
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors",
662
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors",
663
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors",
664
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors",
665
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
666
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
667
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
668
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
669
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
670
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
671
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
672
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
673
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors",
674
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors",
675
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors",
676
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors",
677
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors",
678
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors",
679
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors",
680
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors",
681
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
682
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
683
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
684
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
685
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
686
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
687
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
688
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
689
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors",
690
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors",
691
+ "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors",
692
+ "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors"
693
+ }
694
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
3
+ size 15984
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba951e21f6d1a10d2b40709b73d4b5bc264e27d179299a2b00f4a408ac2386be
3
+ size 1064
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "<unk>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9615384615384616,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.25e-06,
14
+ "loss": 3.7473,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 2.5e-06,
20
+ "loss": 3.7223,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 3.7500000000000005e-06,
26
+ "loss": 2.4038,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 5e-06,
32
+ "loss": 1.1629,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 6.25e-06,
38
+ "loss": 0.5964,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 7.500000000000001e-06,
44
+ "loss": 0.4181,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 8.750000000000001e-06,
50
+ "loss": 0.4785,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1e-05,
56
+ "loss": 0.3043,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 1.125e-05,
62
+ "loss": 0.3688,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 1.25e-05,
68
+ "loss": 0.3231,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 1.375e-05,
74
+ "loss": 2.1367,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 1.5000000000000002e-05,
80
+ "loss": 2.2016,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 1.6250000000000002e-05,
86
+ "loss": 0.4149,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1.7500000000000002e-05,
92
+ "loss": 1.0182,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 1.8750000000000002e-05,
98
+ "loss": 0.6984,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 2e-05,
104
+ "loss": 0.5766,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.9999805729315383e-05,
110
+ "loss": 0.3989,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.999922292480975e-05,
116
+ "loss": 0.367,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.9998251609127465e-05,
122
+ "loss": 0.44,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.9996891820008165e-05,
128
+ "loss": 0.3184,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.9995143610285275e-05,
134
+ "loss": 0.3657,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.9993007047883988e-05,
140
+ "loss": 0.3184,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.999048221581858e-05,
146
+ "loss": 0.2976,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.05,
151
+ "learning_rate": 1.9987569212189224e-05,
152
+ "loss": 0.3187,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.998426815017817e-05,
158
+ "loss": 0.3374,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.9980579158045322e-05,
164
+ "loss": 0.3043,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.997650237912329e-05,
170
+ "loss": 0.3127,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 1.9972037971811802e-05,
176
+ "loss": 0.3154,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.06,
181
+ "learning_rate": 1.996718610957155e-05,
182
+ "loss": 0.296,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.06,
187
+ "learning_rate": 1.9961946980917457e-05,
188
+ "loss": 0.4204,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.9956320789411338e-05,
194
+ "loss": 0.365,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9950307753654016e-05,
200
+ "loss": 0.3546,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.99439081072768e-05,
206
+ "loss": 0.3308,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.07,
211
+ "learning_rate": 1.9937122098932428e-05,
212
+ "loss": 0.3251,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.07,
217
+ "learning_rate": 1.9929949992285397e-05,
218
+ "loss": 0.3876,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "learning_rate": 1.9922392066001724e-05,
224
+ "loss": 0.305,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.9914448613738107e-05,
230
+ "loss": 0.2708,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.9906119944130527e-05,
236
+ "loss": 0.3192,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9897406380782262e-05,
242
+ "loss": 0.3663,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.08,
247
+ "learning_rate": 1.9888308262251286e-05,
248
+ "loss": 0.4343,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.08,
253
+ "learning_rate": 1.9878825942037147e-05,
254
+ "loss": 0.3598,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9868959788567213e-05,
260
+ "loss": 0.3101,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.985871018518236e-05,
266
+ "loss": 0.3289,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.9848077530122083e-05,
272
+ "loss": 0.2666,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.09,
277
+ "learning_rate": 1.9837062236509013e-05,
278
+ "loss": 0.3743,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.09,
283
+ "learning_rate": 1.9825664732332886e-05,
284
+ "loss": 0.319,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.09,
289
+ "learning_rate": 1.981388546043388e-05,
290
+ "loss": 0.3083,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.9801724878485438e-05,
296
+ "loss": 0.2742,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9789183458976485e-05,
302
+ "loss": 0.2902,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.1,
307
+ "learning_rate": 1.977626168919305e-05,
308
+ "loss": 0.3808,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.1,
313
+ "learning_rate": 1.9762960071199334e-05,
314
+ "loss": 0.3679,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.1,
319
+ "learning_rate": 1.9749279121818235e-05,
320
+ "loss": 0.2926,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.9735219372611232e-05,
326
+ "loss": 0.341,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9720781369857747e-05,
332
+ "loss": 0.277,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.11,
337
+ "learning_rate": 1.970596567453391e-05,
338
+ "loss": 0.3394,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.11,
343
+ "learning_rate": 1.969077286229078e-05,
344
+ "loss": 0.3706,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.11,
349
+ "learning_rate": 1.9675203523431964e-05,
350
+ "loss": 0.3312,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.11,
355
+ "learning_rate": 1.9659258262890683e-05,
356
+ "loss": 0.3441,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.964293770020628e-05,
362
+ "loss": 0.2805,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.12,
367
+ "learning_rate": 1.962624246950012e-05,
368
+ "loss": 0.4209,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.12,
373
+ "learning_rate": 1.9609173219450998e-05,
374
+ "loss": 0.2951,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.12,
379
+ "learning_rate": 1.9591730613269878e-05,
380
+ "loss": 0.3099,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "learning_rate": 1.957391532867418e-05,
386
+ "loss": 0.3366,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.955572805786141e-05,
392
+ "loss": 0.3389,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.953716950748227e-05,
398
+ "loss": 0.3793,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.13,
403
+ "learning_rate": 1.9518240398613226e-05,
404
+ "loss": 0.309,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.13,
409
+ "learning_rate": 1.9498941466728462e-05,
410
+ "loss": 0.377,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.13,
415
+ "learning_rate": 1.947927346167132e-05,
416
+ "loss": 0.325,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.13,
421
+ "learning_rate": 1.945923714762516e-05,
422
+ "loss": 0.3787,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.9438833303083677e-05,
428
+ "loss": 0.2878,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.14,
433
+ "learning_rate": 1.9418062720820636e-05,
434
+ "loss": 0.3333,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.14,
439
+ "learning_rate": 1.9396926207859085e-05,
440
+ "loss": 0.2919,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.14,
445
+ "learning_rate": 1.9375424585439994e-05,
446
+ "loss": 0.3297,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.14,
451
+ "learning_rate": 1.935355868899034e-05,
452
+ "loss": 0.3355,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.9331329368090664e-05,
458
+ "loss": 0.3286,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.15,
463
+ "learning_rate": 1.9308737486442045e-05,
464
+ "loss": 0.3542,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.15,
469
+ "learning_rate": 1.9285783921832537e-05,
470
+ "loss": 0.3415,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.15,
475
+ "learning_rate": 1.926246956610309e-05,
476
+ "loss": 0.2879,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.15,
481
+ "learning_rate": 1.9238795325112867e-05,
482
+ "loss": 0.3777,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.15,
487
+ "learning_rate": 1.921476211870408e-05,
488
+ "loss": 0.3188,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.16,
493
+ "learning_rate": 1.9190370880666206e-05,
494
+ "loss": 0.3088,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.16,
499
+ "learning_rate": 1.9165622558699763e-05,
500
+ "loss": 0.3047,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.16,
505
+ "learning_rate": 1.9140518114379433e-05,
506
+ "loss": 0.3617,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.16,
511
+ "learning_rate": 1.9115058523116734e-05,
512
+ "loss": 0.3315,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.16,
517
+ "learning_rate": 1.908924477412211e-05,
518
+ "loss": 0.3732,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.17,
523
+ "learning_rate": 1.9063077870366504e-05,
524
+ "loss": 0.352,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.17,
529
+ "learning_rate": 1.903655882854237e-05,
530
+ "loss": 0.3583,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.17,
535
+ "learning_rate": 1.900968867902419e-05,
536
+ "loss": 0.3372,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.17,
541
+ "learning_rate": 1.898246846582844e-05,
542
+ "loss": 0.2925,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.17,
547
+ "learning_rate": 1.895489924657301e-05,
548
+ "loss": 0.2697,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.17,
553
+ "learning_rate": 1.8926982092436117e-05,
554
+ "loss": 0.3653,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.18,
559
+ "learning_rate": 1.8898718088114688e-05,
560
+ "loss": 0.2705,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.18,
565
+ "learning_rate": 1.887010833178222e-05,
566
+ "loss": 0.2846,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.18,
571
+ "learning_rate": 1.8841153935046098e-05,
572
+ "loss": 0.329,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.18,
577
+ "learning_rate": 1.8811856022904423e-05,
578
+ "loss": 0.3468,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.18,
583
+ "learning_rate": 1.8782215733702286e-05,
584
+ "loss": 0.3879,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.19,
589
+ "learning_rate": 1.8752234219087538e-05,
590
+ "loss": 0.2718,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.19,
595
+ "learning_rate": 1.8721912643966055e-05,
596
+ "loss": 0.269,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.19,
601
+ "learning_rate": 1.8691252186456465e-05,
602
+ "loss": 0.3551,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.19,
607
+ "learning_rate": 1.866025403784439e-05,
608
+ "loss": 0.3023,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.19,
613
+ "learning_rate": 1.862891940253613e-05,
614
+ "loss": 0.3975,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.2,
619
+ "learning_rate": 1.8597249498011906e-05,
620
+ "loss": 0.3149,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.2,
625
+ "learning_rate": 1.8565245554778516e-05,
626
+ "loss": 0.2837,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.2,
631
+ "learning_rate": 1.8532908816321557e-05,
632
+ "loss": 0.3284,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.2,
637
+ "learning_rate": 1.8500240539057093e-05,
638
+ "loss": 0.2755,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.2,
643
+ "learning_rate": 1.8467241992282842e-05,
644
+ "loss": 0.3491,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.21,
649
+ "learning_rate": 1.843391445812886e-05,
650
+ "loss": 0.3455,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.21,
655
+ "learning_rate": 1.8400259231507716e-05,
656
+ "loss": 0.3834,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.21,
661
+ "learning_rate": 1.83662776200642e-05,
662
+ "loss": 0.317,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.21,
667
+ "learning_rate": 1.833197094412449e-05,
668
+ "loss": 0.3171,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.21,
673
+ "learning_rate": 1.8297340536644877e-05,
674
+ "loss": 0.3372,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.22,
679
+ "learning_rate": 1.826238774315995e-05,
680
+ "loss": 0.307,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.22,
685
+ "learning_rate": 1.8227113921730336e-05,
686
+ "loss": 0.3899,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.22,
691
+ "learning_rate": 1.819152044288992e-05,
692
+ "loss": 0.3514,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.22,
697
+ "learning_rate": 1.8155608689592604e-05,
698
+ "loss": 0.2991,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.22,
703
+ "learning_rate": 1.811938005715857e-05,
704
+ "loss": 0.2913,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.23,
709
+ "learning_rate": 1.8082835953220055e-05,
710
+ "loss": 0.2639,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.23,
715
+ "learning_rate": 1.8045977797666685e-05,
716
+ "loss": 0.3344,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.23,
721
+ "learning_rate": 1.8008807022590283e-05,
722
+ "loss": 0.3501,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.23,
727
+ "learning_rate": 1.7971325072229227e-05,
728
+ "loss": 0.3369,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.23,
733
+ "learning_rate": 1.7933533402912354e-05,
734
+ "loss": 0.3157,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.23,
739
+ "learning_rate": 1.7895433483002356e-05,
740
+ "loss": 0.2841,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.24,
745
+ "learning_rate": 1.785702679283874e-05,
746
+ "loss": 0.347,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.24,
751
+ "learning_rate": 1.78183148246803e-05,
752
+ "loss": 0.3704,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.24,
757
+ "learning_rate": 1.777929908264715e-05,
758
+ "loss": 0.356,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.24,
763
+ "learning_rate": 1.7739981082662275e-05,
764
+ "loss": 0.3221,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.24,
769
+ "learning_rate": 1.7700362352392632e-05,
770
+ "loss": 0.3251,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.25,
775
+ "learning_rate": 1.766044443118978e-05,
776
+ "loss": 0.2718,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.25,
781
+ "learning_rate": 1.762022887003011e-05,
782
+ "loss": 0.4306,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.25,
787
+ "learning_rate": 1.757971723145453e-05,
788
+ "loss": 0.3108,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.25,
793
+ "learning_rate": 1.75389110895078e-05,
794
+ "loss": 0.3185,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.25,
799
+ "learning_rate": 1.7497812029677344e-05,
800
+ "loss": 0.328,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.26,
805
+ "learning_rate": 1.7456421648831658e-05,
806
+ "loss": 0.3537,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.26,
811
+ "learning_rate": 1.741474155515827e-05,
812
+ "loss": 0.3029,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.26,
817
+ "learning_rate": 1.737277336810124e-05,
818
+ "loss": 0.398,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.26,
823
+ "learning_rate": 1.7330518718298263e-05,
824
+ "loss": 0.3295,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.26,
829
+ "learning_rate": 1.7287979247517285e-05,
830
+ "loss": 0.2651,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.27,
835
+ "learning_rate": 1.7245156608592727e-05,
836
+ "loss": 0.3531,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.27,
841
+ "learning_rate": 1.7202052465361268e-05,
842
+ "loss": 0.2723,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.27,
847
+ "learning_rate": 1.7158668492597186e-05,
848
+ "loss": 0.3286,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.27,
853
+ "learning_rate": 1.7115006375947304e-05,
854
+ "loss": 0.3359,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.27,
859
+ "learning_rate": 1.7071067811865477e-05,
860
+ "loss": 0.2959,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.28,
865
+ "learning_rate": 1.7026854507546694e-05,
866
+ "loss": 0.3241,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.28,
871
+ "learning_rate": 1.698236818086073e-05,
872
+ "loss": 0.3472,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.28,
877
+ "learning_rate": 1.693761056028542e-05,
878
+ "loss": 0.3085,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.28,
883
+ "learning_rate": 1.689258338483947e-05,
884
+ "loss": 0.2469,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.28,
889
+ "learning_rate": 1.6847288404014937e-05,
890
+ "loss": 0.3253,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.28,
895
+ "learning_rate": 1.6801727377709195e-05,
896
+ "loss": 0.4326,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.29,
901
+ "learning_rate": 1.6755902076156606e-05,
902
+ "loss": 0.2812,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.29,
907
+ "learning_rate": 1.67098142798597e-05,
908
+ "loss": 0.2828,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.29,
913
+ "learning_rate": 1.6663465779520042e-05,
914
+ "loss": 0.3705,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.29,
919
+ "learning_rate": 1.6616858375968596e-05,
920
+ "loss": 0.3308,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.29,
925
+ "learning_rate": 1.6569993880095807e-05,
926
+ "loss": 0.3065,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.3,
931
+ "learning_rate": 1.6522874112781213e-05,
932
+ "loss": 0.2854,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.3,
937
+ "learning_rate": 1.6475500904822707e-05,
938
+ "loss": 0.3087,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.3,
943
+ "learning_rate": 1.6427876096865394e-05,
944
+ "loss": 0.396,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.3,
949
+ "learning_rate": 1.6380001539330088e-05,
950
+ "loss": 0.3022,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.3,
955
+ "learning_rate": 1.6331879092341402e-05,
956
+ "loss": 0.3622,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.31,
961
+ "learning_rate": 1.6283510625655474e-05,
962
+ "loss": 0.3552,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.31,
967
+ "learning_rate": 1.6234898018587336e-05,
968
+ "loss": 0.3417,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.31,
973
+ "learning_rate": 1.6186043159937884e-05,
974
+ "loss": 0.3246,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.31,
979
+ "learning_rate": 1.6136947947920477e-05,
980
+ "loss": 0.3281,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.31,
985
+ "learning_rate": 1.608761429008721e-05,
986
+ "loss": 0.3224,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.32,
991
+ "learning_rate": 1.6038044103254775e-05,
992
+ "loss": 0.2562,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.32,
997
+ "learning_rate": 1.5988239313430004e-05,
998
+ "loss": 0.2622,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.32,
1003
+ "learning_rate": 1.5938201855735017e-05,
1004
+ "loss": 0.3247,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.32,
1009
+ "learning_rate": 1.5887933674332048e-05,
1010
+ "loss": 0.3902,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.32,
1015
+ "learning_rate": 1.5837436722347902e-05,
1016
+ "loss": 0.3079,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.33,
1021
+ "learning_rate": 1.578671296179806e-05,
1022
+ "loss": 0.2822,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.33,
1027
+ "learning_rate": 1.573576436351046e-05,
1028
+ "loss": 0.3139,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.33,
1033
+ "learning_rate": 1.5684592907048925e-05,
1034
+ "loss": 0.2522,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.33,
1039
+ "learning_rate": 1.563320058063622e-05,
1040
+ "loss": 0.2726,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.33,
1045
+ "learning_rate": 1.5581589381076843e-05,
1046
+ "loss": 0.3524,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.33,
1051
+ "learning_rate": 1.5529761313679396e-05,
1052
+ "loss": 0.2888,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.34,
1057
+ "learning_rate": 1.5477718392178716e-05,
1058
+ "loss": 0.3418,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.34,
1063
+ "learning_rate": 1.5425462638657597e-05,
1064
+ "loss": 0.322,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.34,
1069
+ "learning_rate": 1.5372996083468242e-05,
1070
+ "loss": 0.279,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.34,
1075
+ "learning_rate": 1.5320320765153367e-05,
1076
+ "loss": 0.3396,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.34,
1081
+ "learning_rate": 1.526743873036701e-05,
1082
+ "loss": 0.4238,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.35,
1087
+ "learning_rate": 1.5214352033794981e-05,
1088
+ "loss": 0.3893,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.35,
1093
+ "learning_rate": 1.5161062738075068e-05,
1094
+ "loss": 0.3877,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.35,
1099
+ "learning_rate": 1.5107572913716859e-05,
1100
+ "loss": 0.3096,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.35,
1105
+ "learning_rate": 1.505388463902131e-05,
1106
+ "loss": 0.2542,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.35,
1111
+ "learning_rate": 1.5000000000000002e-05,
1112
+ "loss": 0.3074,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.36,
1117
+ "learning_rate": 1.4945921090294076e-05,
1118
+ "loss": 0.318,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.36,
1123
+ "learning_rate": 1.4891650011092896e-05,
1124
+ "loss": 0.3095,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.36,
1129
+ "learning_rate": 1.4837188871052399e-05,
1130
+ "loss": 0.347,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.36,
1135
+ "learning_rate": 1.4782539786213184e-05,
1136
+ "loss": 0.3056,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.36,
1141
+ "learning_rate": 1.4727704879918272e-05,
1142
+ "loss": 0.3651,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.37,
1147
+ "learning_rate": 1.4672686282730622e-05,
1148
+ "loss": 0.361,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.37,
1153
+ "learning_rate": 1.4617486132350343e-05,
1154
+ "loss": 0.3252,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.37,
1159
+ "learning_rate": 1.4562106573531632e-05,
1160
+ "loss": 0.3671,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.37,
1165
+ "learning_rate": 1.4506549757999456e-05,
1166
+ "loss": 0.2934,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.37,
1171
+ "learning_rate": 1.4450817844365924e-05,
1172
+ "loss": 0.3612,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.38,
1177
+ "learning_rate": 1.4394912998046451e-05,
1178
+ "loss": 0.3131,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.38,
1183
+ "learning_rate": 1.4338837391175582e-05,
1184
+ "loss": 0.3875,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.38,
1189
+ "learning_rate": 1.4282593202522627e-05,
1190
+ "loss": 0.2545,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.38,
1195
+ "learning_rate": 1.4226182617406996e-05,
1196
+ "loss": 0.2573,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.38,
1201
+ "learning_rate": 1.4169607827613284e-05,
1202
+ "loss": 0.3089,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.38,
1207
+ "learning_rate": 1.4112871031306118e-05,
1208
+ "loss": 0.3096,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.39,
1213
+ "learning_rate": 1.4055974432944753e-05,
1214
+ "loss": 0.3481,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.39,
1219
+ "learning_rate": 1.3998920243197408e-05,
1220
+ "loss": 0.3076,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.39,
1225
+ "learning_rate": 1.3941710678855396e-05,
1226
+ "loss": 0.3079,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.39,
1231
+ "learning_rate": 1.3884347962746949e-05,
1232
+ "loss": 0.3306,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.39,
1237
+ "learning_rate": 1.3826834323650899e-05,
1238
+ "loss": 0.3745,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.4,
1243
+ "learning_rate": 1.3769171996210053e-05,
1244
+ "loss": 0.2773,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.4,
1249
+ "learning_rate": 1.371136322084438e-05,
1250
+ "loss": 0.2897,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.4,
1255
+ "learning_rate": 1.3653410243663953e-05,
1256
+ "loss": 0.3391,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.4,
1261
+ "learning_rate": 1.3595315316381676e-05,
1262
+ "loss": 0.2885,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.4,
1267
+ "learning_rate": 1.3537080696225815e-05,
1268
+ "loss": 0.3336,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.41,
1273
+ "learning_rate": 1.3478708645852272e-05,
1274
+ "loss": 0.2904,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.41,
1279
+ "learning_rate": 1.342020143325669e-05,
1280
+ "loss": 0.2822,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.41,
1285
+ "learning_rate": 1.336156133168631e-05,
1286
+ "loss": 0.369,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.41,
1291
+ "learning_rate": 1.3302790619551673e-05,
1292
+ "loss": 0.3387,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.41,
1297
+ "learning_rate": 1.3243891580338074e-05,
1298
+ "loss": 0.3428,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.42,
1303
+ "learning_rate": 1.3184866502516846e-05,
1304
+ "loss": 0.3211,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.42,
1309
+ "learning_rate": 1.3125717679456447e-05,
1310
+ "loss": 0.2601,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.42,
1315
+ "learning_rate": 1.3066447409333345e-05,
1316
+ "loss": 0.3782,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.42,
1321
+ "learning_rate": 1.300705799504273e-05,
1322
+ "loss": 0.2641,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.42,
1327
+ "learning_rate": 1.2947551744109044e-05,
1328
+ "loss": 0.3129,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.42,
1333
+ "learning_rate": 1.28879309685963e-05,
1334
+ "loss": 0.3096,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.43,
1339
+ "learning_rate": 1.2828197985018276e-05,
1340
+ "loss": 0.3007,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.43,
1345
+ "learning_rate": 1.2768355114248493e-05,
1346
+ "loss": 0.3149,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.43,
1351
+ "learning_rate": 1.2708404681430054e-05,
1352
+ "loss": 0.3493,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.43,
1357
+ "learning_rate": 1.2648349015885272e-05,
1358
+ "loss": 0.3406,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.43,
1363
+ "learning_rate": 1.2588190451025209e-05,
1364
+ "loss": 0.301,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.44,
1369
+ "learning_rate": 1.2527931324258975e-05,
1370
+ "loss": 0.3252,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.44,
1375
+ "learning_rate": 1.2467573976902936e-05,
1376
+ "loss": 0.374,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.44,
1381
+ "learning_rate": 1.2407120754089733e-05,
1382
+ "loss": 0.2819,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.44,
1387
+ "learning_rate": 1.2346574004677154e-05,
1388
+ "loss": 0.2936,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.44,
1393
+ "learning_rate": 1.2285936081156897e-05,
1394
+ "loss": 0.3504,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.45,
1399
+ "learning_rate": 1.2225209339563144e-05,
1400
+ "loss": 0.2735,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.45,
1405
+ "learning_rate": 1.2164396139381029e-05,
1406
+ "loss": 0.2653,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.45,
1411
+ "learning_rate": 1.210349884345496e-05,
1412
+ "loss": 0.2795,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.45,
1417
+ "learning_rate": 1.2042519817896805e-05,
1418
+ "loss": 0.2784,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.45,
1423
+ "learning_rate": 1.1981461431993978e-05,
1424
+ "loss": 0.2865,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.46,
1429
+ "learning_rate": 1.1920326058117364e-05,
1430
+ "loss": 0.3273,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.46,
1435
+ "learning_rate": 1.1859116071629148e-05,
1436
+ "loss": 0.3055,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.46,
1441
+ "learning_rate": 1.1797833850790527e-05,
1442
+ "loss": 0.2781,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.46,
1447
+ "learning_rate": 1.1736481776669307e-05,
1448
+ "loss": 0.2747,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.46,
1453
+ "learning_rate": 1.1675062233047365e-05,
1454
+ "loss": 0.2615,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.47,
1459
+ "learning_rate": 1.1613577606328068e-05,
1460
+ "loss": 0.2741,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.47,
1465
+ "learning_rate": 1.1552030285443516e-05,
1466
+ "loss": 0.4037,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.47,
1471
+ "learning_rate": 1.1490422661761744e-05,
1472
+ "loss": 0.3396,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.47,
1477
+ "learning_rate": 1.1428757128993801e-05,
1478
+ "loss": 0.3196,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.47,
1483
+ "learning_rate": 1.1367036083100735e-05,
1484
+ "loss": 0.3166,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.47,
1489
+ "learning_rate": 1.130526192220052e-05,
1490
+ "loss": 0.3005,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.48,
1495
+ "learning_rate": 1.1243437046474854e-05,
1496
+ "loss": 0.34,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.48,
1501
+ "learning_rate": 1.118156385807593e-05,
1502
+ "loss": 0.2704,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.48,
1507
+ "learning_rate": 1.1119644761033079e-05,
1508
+ "loss": 0.3103,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.48,
1513
+ "learning_rate": 1.105768216115938e-05,
1514
+ "loss": 0.2643,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.48,
1519
+ "learning_rate": 1.0995678465958168e-05,
1520
+ "loss": 0.2804,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.49,
1525
+ "learning_rate": 1.0933636084529507e-05,
1526
+ "loss": 0.3296,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.49,
1531
+ "learning_rate": 1.0871557427476585e-05,
1532
+ "loss": 0.2671,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.49,
1537
+ "learning_rate": 1.0809444906812034e-05,
1538
+ "loss": 0.3268,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.49,
1543
+ "learning_rate": 1.0747300935864245e-05,
1544
+ "loss": 0.3031,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.49,
1549
+ "learning_rate": 1.0685127929183567e-05,
1550
+ "loss": 0.3609,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.5,
1555
+ "learning_rate": 1.0622928302448523e-05,
1556
+ "loss": 0.3359,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.5,
1561
+ "learning_rate": 1.0560704472371919e-05,
1562
+ "loss": 0.2838,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.5,
1567
+ "learning_rate": 1.0498458856606972e-05,
1568
+ "loss": 0.3347,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.5,
1573
+ "learning_rate": 1.0436193873653362e-05,
1574
+ "loss": 0.3121,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.5,
1579
+ "learning_rate": 1.037391194276326e-05,
1580
+ "loss": 0.2965,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.51,
1585
+ "learning_rate": 1.0311615483847333e-05,
1586
+ "loss": 0.3587,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.51,
1591
+ "learning_rate": 1.0249306917380731e-05,
1592
+ "loss": 0.3694,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.51,
1597
+ "learning_rate": 1.0186988664309023e-05,
1598
+ "loss": 0.3086,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.51,
1603
+ "learning_rate": 1.0124663145954152e-05,
1604
+ "loss": 0.2684,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.51,
1609
+ "learning_rate": 1.0062332783920337e-05,
1610
+ "loss": 0.3054,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.52,
1615
+ "learning_rate": 1e-05,
1616
+ "loss": 0.3558,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.52,
1621
+ "learning_rate": 9.937667216079665e-06,
1622
+ "loss": 0.3235,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.52,
1627
+ "learning_rate": 9.87533685404585e-06,
1628
+ "loss": 0.3369,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.52,
1633
+ "learning_rate": 9.81301133569098e-06,
1634
+ "loss": 0.3373,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.52,
1639
+ "learning_rate": 9.750693082619274e-06,
1640
+ "loss": 0.2917,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.53,
1645
+ "learning_rate": 9.68838451615267e-06,
1646
+ "loss": 0.2838,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.53,
1651
+ "learning_rate": 9.626088057236745e-06,
1652
+ "loss": 0.3127,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.53,
1657
+ "learning_rate": 9.563806126346643e-06,
1658
+ "loss": 0.3115,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.53,
1663
+ "learning_rate": 9.501541143393028e-06,
1664
+ "loss": 0.3445,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.53,
1669
+ "learning_rate": 9.439295527628083e-06,
1670
+ "loss": 0.3708,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.53,
1675
+ "learning_rate": 9.377071697551479e-06,
1676
+ "loss": 0.2742,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.54,
1681
+ "learning_rate": 9.314872070816435e-06,
1682
+ "loss": 0.3338,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.54,
1687
+ "learning_rate": 9.252699064135759e-06,
1688
+ "loss": 0.252,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.54,
1693
+ "learning_rate": 9.190555093187968e-06,
1694
+ "loss": 0.2629,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.54,
1699
+ "learning_rate": 9.128442572523418e-06,
1700
+ "loss": 0.3567,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.54,
1705
+ "learning_rate": 9.066363915470494e-06,
1706
+ "loss": 0.3941,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.55,
1711
+ "learning_rate": 9.004321534041836e-06,
1712
+ "loss": 0.34,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.55,
1717
+ "learning_rate": 8.942317838840625e-06,
1718
+ "loss": 0.3793,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.55,
1723
+ "learning_rate": 8.880355238966923e-06,
1724
+ "loss": 0.3451,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.55,
1729
+ "learning_rate": 8.818436141924072e-06,
1730
+ "loss": 0.2892,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.55,
1735
+ "learning_rate": 8.756562953525151e-06,
1736
+ "loss": 0.3142,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.56,
1741
+ "learning_rate": 8.694738077799487e-06,
1742
+ "loss": 0.2782,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.56,
1747
+ "learning_rate": 8.632963916899268e-06,
1748
+ "loss": 0.2284,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.56,
1753
+ "learning_rate": 8.571242871006202e-06,
1754
+ "loss": 0.3189,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.56,
1759
+ "learning_rate": 8.509577338238255e-06,
1760
+ "loss": 0.2888,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.56,
1765
+ "learning_rate": 8.447969714556484e-06,
1766
+ "loss": 0.3124,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.57,
1771
+ "learning_rate": 8.386422393671934e-06,
1772
+ "loss": 0.3607,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.57,
1777
+ "learning_rate": 8.324937766952638e-06,
1778
+ "loss": 0.3074,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.57,
1783
+ "learning_rate": 8.263518223330698e-06,
1784
+ "loss": 0.3403,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.57,
1789
+ "learning_rate": 8.202166149209475e-06,
1790
+ "loss": 0.3296,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.57,
1795
+ "learning_rate": 8.140883928370855e-06,
1796
+ "loss": 0.2788,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.57,
1801
+ "learning_rate": 8.079673941882639e-06,
1802
+ "loss": 0.3306,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.58,
1807
+ "learning_rate": 8.018538568006027e-06,
1808
+ "loss": 0.3092,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.58,
1813
+ "learning_rate": 7.957480182103198e-06,
1814
+ "loss": 0.3324,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.58,
1819
+ "learning_rate": 7.896501156545044e-06,
1820
+ "loss": 0.293,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.58,
1825
+ "learning_rate": 7.835603860618973e-06,
1826
+ "loss": 0.408,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.58,
1831
+ "learning_rate": 7.774790660436857e-06,
1832
+ "loss": 0.3254,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.59,
1837
+ "learning_rate": 7.714063918843106e-06,
1838
+ "loss": 0.2916,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.59,
1843
+ "learning_rate": 7.653425995322852e-06,
1844
+ "loss": 0.3205,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.59,
1849
+ "learning_rate": 7.592879245910273e-06,
1850
+ "loss": 0.274,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.59,
1855
+ "learning_rate": 7.532426023097063e-06,
1856
+ "loss": 0.2606,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.59,
1861
+ "learning_rate": 7.472068675741024e-06,
1862
+ "loss": 0.3173,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.6,
1867
+ "learning_rate": 7.411809548974792e-06,
1868
+ "loss": 0.2818,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.6,
1873
+ "learning_rate": 7.3516509841147276e-06,
1874
+ "loss": 0.3386,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.6,
1879
+ "learning_rate": 7.291595318569951e-06,
1880
+ "loss": 0.3264,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.6,
1885
+ "learning_rate": 7.2316448857515076e-06,
1886
+ "loss": 0.233,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.6,
1891
+ "learning_rate": 7.171802014981726e-06,
1892
+ "loss": 0.2876,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.61,
1897
+ "learning_rate": 7.112069031403704e-06,
1898
+ "loss": 0.2514,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.61,
1903
+ "learning_rate": 7.052448255890958e-06,
1904
+ "loss": 0.3363,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.61,
1909
+ "learning_rate": 6.992942004957271e-06,
1910
+ "loss": 0.3113,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.61,
1915
+ "learning_rate": 6.933552590666659e-06,
1916
+ "loss": 0.2884,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.61,
1921
+ "learning_rate": 6.874282320543557e-06,
1922
+ "loss": 0.3039,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.62,
1927
+ "learning_rate": 6.815133497483157e-06,
1928
+ "loss": 0.2625,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.62,
1933
+ "learning_rate": 6.7561084196619306e-06,
1934
+ "loss": 0.3116,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.62,
1939
+ "learning_rate": 6.697209380448333e-06,
1940
+ "loss": 0.3497,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.62,
1945
+ "learning_rate": 6.638438668313695e-06,
1946
+ "loss": 0.319,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.62,
1951
+ "learning_rate": 6.579798566743314e-06,
1952
+ "loss": 0.3007,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.62,
1957
+ "learning_rate": 6.521291354147727e-06,
1958
+ "loss": 0.2998,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.63,
1963
+ "learning_rate": 6.462919303774186e-06,
1964
+ "loss": 0.2918,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.63,
1969
+ "learning_rate": 6.404684683618325e-06,
1970
+ "loss": 0.2604,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.63,
1975
+ "learning_rate": 6.34658975633605e-06,
1976
+ "loss": 0.3346,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.63,
1981
+ "learning_rate": 6.288636779155621e-06,
1982
+ "loss": 0.3309,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.63,
1987
+ "learning_rate": 6.230828003789949e-06,
1988
+ "loss": 0.4091,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.64,
1993
+ "learning_rate": 6.173165676349103e-06,
1994
+ "loss": 0.301,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.64,
1999
+ "learning_rate": 6.115652037253054e-06,
2000
+ "loss": 0.3056,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.64,
2005
+ "learning_rate": 6.058289321144608e-06,
2006
+ "loss": 0.2798,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.64,
2011
+ "learning_rate": 6.001079756802592e-06,
2012
+ "loss": 0.2976,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.64,
2017
+ "learning_rate": 5.944025567055251e-06,
2018
+ "loss": 0.3189,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.65,
2023
+ "learning_rate": 5.887128968693887e-06,
2024
+ "loss": 0.3335,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.65,
2029
+ "learning_rate": 5.830392172386723e-06,
2030
+ "loss": 0.3092,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.65,
2035
+ "learning_rate": 5.773817382593008e-06,
2036
+ "loss": 0.3579,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.65,
2041
+ "learning_rate": 5.717406797477371e-06,
2042
+ "loss": 0.2755,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.65,
2047
+ "learning_rate": 5.66116260882442e-06,
2048
+ "loss": 0.2702,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.66,
2053
+ "learning_rate": 5.6050870019535496e-06,
2054
+ "loss": 0.3047,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.66,
2059
+ "learning_rate": 5.549182155634076e-06,
2060
+ "loss": 0.3235,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.66,
2065
+ "learning_rate": 5.493450242000546e-06,
2066
+ "loss": 0.271,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.66,
2071
+ "learning_rate": 5.43789342646837e-06,
2072
+ "loss": 0.2651,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.66,
2077
+ "learning_rate": 5.382513867649663e-06,
2078
+ "loss": 0.2757,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.67,
2083
+ "learning_rate": 5.32731371726938e-06,
2084
+ "loss": 0.282,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.67,
2089
+ "learning_rate": 5.2722951200817315e-06,
2090
+ "loss": 0.3017,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.67,
2095
+ "learning_rate": 5.217460213786822e-06,
2096
+ "loss": 0.248,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.67,
2101
+ "learning_rate": 5.1628111289476025e-06,
2102
+ "loss": 0.3195,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.67,
2107
+ "learning_rate": 5.108349988907111e-06,
2108
+ "loss": 0.3289,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.68,
2113
+ "learning_rate": 5.054078909705926e-06,
2114
+ "loss": 0.3232,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.68,
2119
+ "learning_rate": 5.000000000000003e-06,
2120
+ "loss": 0.3053,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.68,
2125
+ "learning_rate": 4.946115360978696e-06,
2126
+ "loss": 0.2811,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.68,
2131
+ "learning_rate": 4.892427086283147e-06,
2132
+ "loss": 0.2756,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.68,
2137
+ "learning_rate": 4.838937261924933e-06,
2138
+ "loss": 0.3213,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.68,
2143
+ "learning_rate": 4.78564796620502e-06,
2144
+ "loss": 0.3865,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.69,
2149
+ "learning_rate": 4.732561269632992e-06,
2150
+ "loss": 0.2899,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.69,
2155
+ "learning_rate": 4.679679234846636e-06,
2156
+ "loss": 0.3323,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.69,
2161
+ "learning_rate": 4.627003916531761e-06,
2162
+ "loss": 0.2954,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.69,
2167
+ "learning_rate": 4.5745373613424075e-06,
2168
+ "loss": 0.2722,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.69,
2173
+ "learning_rate": 4.522281607821288e-06,
2174
+ "loss": 0.2635,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.7,
2179
+ "learning_rate": 4.470238686320606e-06,
2180
+ "loss": 0.3068,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.7,
2185
+ "learning_rate": 4.418410618923163e-06,
2186
+ "loss": 0.3263,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.7,
2191
+ "learning_rate": 4.3667994193637794e-06,
2192
+ "loss": 0.2904,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.7,
2197
+ "learning_rate": 4.315407092951078e-06,
2198
+ "loss": 0.3106,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.7,
2203
+ "learning_rate": 4.264235636489542e-06,
2204
+ "loss": 0.3729,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.71,
2209
+ "learning_rate": 4.213287038201943e-06,
2210
+ "loss": 0.2611,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.71,
2215
+ "learning_rate": 4.162563277652104e-06,
2216
+ "loss": 0.3506,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.71,
2221
+ "learning_rate": 4.112066325667954e-06,
2222
+ "loss": 0.263,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.71,
2227
+ "learning_rate": 4.061798144264986e-06,
2228
+ "loss": 0.2519,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.71,
2233
+ "learning_rate": 4.0117606865699975e-06,
2234
+ "loss": 0.319,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.72,
2239
+ "learning_rate": 3.961955896745224e-06,
2240
+ "loss": 0.3457,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.72,
2245
+ "learning_rate": 3.912385709912794e-06,
2246
+ "loss": 0.2825,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.72,
2251
+ "learning_rate": 3.8630520520795275e-06,
2252
+ "loss": 0.2782,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.72,
2257
+ "learning_rate": 3.8139568400621184e-06,
2258
+ "loss": 0.2852,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.72,
2263
+ "learning_rate": 3.7651019814126656e-06,
2264
+ "loss": 0.2699,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.72,
2269
+ "learning_rate": 3.7164893743445274e-06,
2270
+ "loss": 0.2634,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.73,
2275
+ "learning_rate": 3.6681209076586035e-06,
2276
+ "loss": 0.2939,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.73,
2281
+ "learning_rate": 3.619998460669916e-06,
2282
+ "loss": 0.3233,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.73,
2287
+ "learning_rate": 3.5721239031346067e-06,
2288
+ "loss": 0.2729,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.73,
2293
+ "learning_rate": 3.5244990951772972e-06,
2294
+ "loss": 0.3827,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.73,
2299
+ "learning_rate": 3.4771258872187917e-06,
2300
+ "loss": 0.3219,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.74,
2305
+ "learning_rate": 3.4300061199041967e-06,
2306
+ "loss": 0.2812,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.74,
2311
+ "learning_rate": 3.3831416240314085e-06,
2312
+ "loss": 0.2616,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.74,
2317
+ "learning_rate": 3.3365342204799613e-06,
2318
+ "loss": 0.3082,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.74,
2323
+ "learning_rate": 3.290185720140301e-06,
2324
+ "loss": 0.2526,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.74,
2329
+ "learning_rate": 3.2440979238433977e-06,
2330
+ "loss": 0.3027,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.75,
2335
+ "learning_rate": 3.1982726222908046e-06,
2336
+ "loss": 0.2902,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.75,
2341
+ "learning_rate": 3.152711595985065e-06,
2342
+ "loss": 0.283,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.75,
2347
+ "learning_rate": 3.10741661516053e-06,
2348
+ "loss": 0.238,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.75,
2353
+ "learning_rate": 3.0623894397145837e-06,
2354
+ "loss": 0.2777,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.75,
2359
+ "learning_rate": 3.017631819139273e-06,
2360
+ "loss": 0.2997,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.76,
2365
+ "learning_rate": 2.9731454924533086e-06,
2366
+ "loss": 0.317,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.76,
2371
+ "learning_rate": 2.9289321881345257e-06,
2372
+ "loss": 0.2685,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.76,
2377
+ "learning_rate": 2.884993624052701e-06,
2378
+ "loss": 0.2233,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.76,
2383
+ "learning_rate": 2.8413315074028157e-06,
2384
+ "loss": 0.2934,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.76,
2389
+ "learning_rate": 2.7979475346387363e-06,
2390
+ "loss": 0.2844,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.77,
2395
+ "learning_rate": 2.7548433914072736e-06,
2396
+ "loss": 0.3373,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.77,
2401
+ "learning_rate": 2.712020752482717e-06,
2402
+ "loss": 0.3245,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.77,
2407
+ "learning_rate": 2.669481281701739e-06,
2408
+ "loss": 0.3674,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.77,
2413
+ "learning_rate": 2.6272266318987606e-06,
2414
+ "loss": 0.3053,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.77,
2419
+ "learning_rate": 2.5852584448417327e-06,
2420
+ "loss": 0.3318,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.78,
2425
+ "learning_rate": 2.5435783511683444e-06,
2426
+ "loss": 0.2434,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.78,
2431
+ "learning_rate": 2.502187970322657e-06,
2432
+ "loss": 0.2829,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.78,
2437
+ "learning_rate": 2.461088910492202e-06,
2438
+ "loss": 0.2951,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.78,
2443
+ "learning_rate": 2.420282768545469e-06,
2444
+ "loss": 0.2691,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.78,
2449
+ "learning_rate": 2.3797711299698924e-06,
2450
+ "loss": 0.238,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.78,
2455
+ "learning_rate": 2.339555568810221e-06,
2456
+ "loss": 0.437,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.79,
2461
+ "learning_rate": 2.2996376476073724e-06,
2462
+ "loss": 0.3255,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.79,
2467
+ "learning_rate": 2.2600189173377263e-06,
2468
+ "loss": 0.3383,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.79,
2473
+ "learning_rate": 2.2207009173528528e-06,
2474
+ "loss": 0.2849,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.79,
2479
+ "learning_rate": 2.1816851753197023e-06,
2480
+ "loss": 0.3324,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.79,
2485
+ "learning_rate": 2.1429732071612653e-06,
2486
+ "loss": 0.298,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.8,
2491
+ "learning_rate": 2.104566516997647e-06,
2492
+ "loss": 0.2391,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.8,
2497
+ "learning_rate": 2.0664665970876496e-06,
2498
+ "loss": 0.2806,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.8,
2503
+ "learning_rate": 2.0286749277707783e-06,
2504
+ "loss": 0.3077,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.8,
2509
+ "learning_rate": 1.9911929774097216e-06,
2510
+ "loss": 0.3469,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.8,
2515
+ "learning_rate": 1.9540222023333165e-06,
2516
+ "loss": 0.3025,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.81,
2521
+ "learning_rate": 1.9171640467799478e-06,
2522
+ "loss": 0.3226,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.81,
2527
+ "learning_rate": 1.880619942841435e-06,
2528
+ "loss": 0.2776,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.81,
2533
+ "learning_rate": 1.8443913104073984e-06,
2534
+ "loss": 0.2289,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.81,
2539
+ "learning_rate": 1.808479557110081e-06,
2540
+ "loss": 0.2402,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.81,
2545
+ "learning_rate": 1.7728860782696666e-06,
2546
+ "loss": 0.3265,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.82,
2551
+ "learning_rate": 1.7376122568400533e-06,
2552
+ "loss": 0.2353,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.82,
2557
+ "learning_rate": 1.7026594633551252e-06,
2558
+ "loss": 0.2629,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.82,
2563
+ "learning_rate": 1.6680290558755119e-06,
2564
+ "loss": 0.3611,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.82,
2569
+ "learning_rate": 1.6337223799358025e-06,
2570
+ "loss": 0.3559,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.82,
2575
+ "learning_rate": 1.599740768492286e-06,
2576
+ "loss": 0.3488,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.82,
2581
+ "learning_rate": 1.566085541871145e-06,
2582
+ "loss": 0.3067,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.83,
2587
+ "learning_rate": 1.5327580077171589e-06,
2588
+ "loss": 0.3063,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.83,
2593
+ "learning_rate": 1.499759460942909e-06,
2594
+ "loss": 0.2918,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.83,
2599
+ "learning_rate": 1.467091183678444e-06,
2600
+ "loss": 0.2416,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.83,
2605
+ "learning_rate": 1.4347544452214869e-06,
2606
+ "loss": 0.2829,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.83,
2611
+ "learning_rate": 1.4027505019880972e-06,
2612
+ "loss": 0.278,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.84,
2617
+ "learning_rate": 1.3710805974638697e-06,
2618
+ "loss": 0.3117,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.84,
2623
+ "learning_rate": 1.339745962155613e-06,
2624
+ "loss": 0.2856,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.84,
2629
+ "learning_rate": 1.3087478135435361e-06,
2630
+ "loss": 0.2803,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.84,
2635
+ "learning_rate": 1.278087356033947e-06,
2636
+ "loss": 0.2639,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.84,
2641
+ "learning_rate": 1.2477657809124632e-06,
2642
+ "loss": 0.3482,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.85,
2647
+ "learning_rate": 1.2177842662977136e-06,
2648
+ "loss": 0.308,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.85,
2653
+ "learning_rate": 1.188143977095576e-06,
2654
+ "loss": 0.2487,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.85,
2659
+ "learning_rate": 1.1588460649539036e-06,
2660
+ "loss": 0.2937,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.85,
2665
+ "learning_rate": 1.129891668217783e-06,
2666
+ "loss": 0.2821,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.85,
2671
+ "learning_rate": 1.1012819118853147e-06,
2672
+ "loss": 0.2694,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.86,
2677
+ "learning_rate": 1.073017907563887e-06,
2678
+ "loss": 0.317,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.86,
2683
+ "learning_rate": 1.0451007534269908e-06,
2684
+ "loss": 0.3102,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.86,
2689
+ "learning_rate": 1.0175315341715598e-06,
2690
+ "loss": 0.3156,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.86,
2695
+ "learning_rate": 9.903113209758098e-07,
2696
+ "loss": 0.2957,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.86,
2701
+ "learning_rate": 9.634411714576353e-07,
2702
+ "loss": 0.2966,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.87,
2707
+ "learning_rate": 9.369221296335007e-07,
2708
+ "loss": 0.3048,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.87,
2713
+ "learning_rate": 9.107552258778907e-07,
2714
+ "loss": 0.3222,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.87,
2719
+ "learning_rate": 8.849414768832687e-07,
2720
+ "loss": 0.2689,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.87,
2725
+ "learning_rate": 8.5948188562057e-07,
2726
+ "loss": 0.2808,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.87,
2731
+ "learning_rate": 8.343774413002382e-07,
2732
+ "loss": 0.2847,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.88,
2737
+ "learning_rate": 8.096291193337935e-07,
2738
+ "loss": 0.3227,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.88,
2743
+ "learning_rate": 7.852378812959227e-07,
2744
+ "loss": 0.3605,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.88,
2749
+ "learning_rate": 7.612046748871327e-07,
2750
+ "loss": 0.2973,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.88,
2755
+ "learning_rate": 7.375304338969135e-07,
2756
+ "loss": 0.3464,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.88,
2761
+ "learning_rate": 7.142160781674645e-07,
2762
+ "loss": 0.2984,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.88,
2767
+ "learning_rate": 6.912625135579587e-07,
2768
+ "loss": 0.2863,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.89,
2773
+ "learning_rate": 6.68670631909335e-07,
2774
+ "loss": 0.2629,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.89,
2779
+ "learning_rate": 6.464413110096601e-07,
2780
+ "loss": 0.322,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.89,
2785
+ "learning_rate": 6.245754145600091e-07,
2786
+ "loss": 0.2915,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.89,
2791
+ "learning_rate": 6.030737921409169e-07,
2792
+ "loss": 0.3556,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.89,
2797
+ "learning_rate": 5.819372791793654e-07,
2798
+ "loss": 0.2811,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.9,
2803
+ "learning_rate": 5.611666969163243e-07,
2804
+ "loss": 0.3172,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.9,
2809
+ "learning_rate": 5.407628523748398e-07,
2810
+ "loss": 0.2509,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.9,
2815
+ "learning_rate": 5.207265383286831e-07,
2816
+ "loss": 0.3164,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.9,
2821
+ "learning_rate": 5.010585332715401e-07,
2822
+ "loss": 0.3269,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.9,
2827
+ "learning_rate": 4.817596013867765e-07,
2828
+ "loss": 0.2737,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.91,
2833
+ "learning_rate": 4.628304925177318e-07,
2834
+ "loss": 0.2989,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.91,
2839
+ "learning_rate": 4.4427194213859216e-07,
2840
+ "loss": 0.2985,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.91,
2845
+ "learning_rate": 4.2608467132581934e-07,
2846
+ "loss": 0.2354,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.91,
2851
+ "learning_rate": 4.082693867301224e-07,
2852
+ "loss": 0.2953,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.91,
2857
+ "learning_rate": 3.908267805490051e-07,
2858
+ "loss": 0.3005,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.92,
2863
+ "learning_rate": 3.7375753049987974e-07,
2864
+ "loss": 0.3116,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.92,
2869
+ "learning_rate": 3.570622997937234e-07,
2870
+ "loss": 0.3119,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.92,
2875
+ "learning_rate": 3.4074173710931804e-07,
2876
+ "loss": 0.3156,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.92,
2881
+ "learning_rate": 3.247964765680389e-07,
2882
+ "loss": 0.297,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.92,
2887
+ "learning_rate": 3.0922713770922155e-07,
2888
+ "loss": 0.2563,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.93,
2893
+ "learning_rate": 2.940343254660905e-07,
2894
+ "loss": 0.2928,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.93,
2899
+ "learning_rate": 2.7921863014225504e-07,
2900
+ "loss": 0.282,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.93,
2905
+ "learning_rate": 2.6478062738876654e-07,
2906
+ "loss": 0.2774,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.93,
2911
+ "learning_rate": 2.507208781817638e-07,
2912
+ "loss": 0.3289,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.93,
2917
+ "learning_rate": 2.370399288006664e-07,
2918
+ "loss": 0.2862,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.93,
2923
+ "learning_rate": 2.2373831080695463e-07,
2924
+ "loss": 0.2452,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.94,
2929
+ "learning_rate": 2.1081654102351634e-07,
2930
+ "loss": 0.2631,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.94,
2935
+ "learning_rate": 1.9827512151456175e-07,
2936
+ "loss": 0.2316,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.94,
2941
+ "learning_rate": 1.8611453956612346e-07,
2942
+ "loss": 0.302,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.94,
2947
+ "learning_rate": 1.7433526766711727e-07,
2948
+ "loss": 0.2666,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.94,
2953
+ "learning_rate": 1.629377634909868e-07,
2954
+ "loss": 0.2707,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.95,
2959
+ "learning_rate": 1.519224698779198e-07,
2960
+ "loss": 0.3028,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.95,
2965
+ "learning_rate": 1.4128981481764115e-07,
2966
+ "loss": 0.2957,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.95,
2971
+ "learning_rate": 1.3104021143278911e-07,
2972
+ "loss": 0.2482,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.95,
2977
+ "learning_rate": 1.2117405796285286e-07,
2978
+ "loss": 0.2428,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.95,
2983
+ "learning_rate": 1.1169173774871478e-07,
2984
+ "loss": 0.2928,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.96,
2989
+ "learning_rate": 1.0259361921774014e-07,
2990
+ "loss": 0.3246,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.96,
2995
+ "learning_rate": 9.388005586947191e-08,
2996
+ "loss": 0.3169,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.96,
3001
+ "learning_rate": 8.555138626189619e-08,
3002
+ "loss": 0.2443,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.96,
3007
+ "learning_rate": 7.760793399827937e-08,
3008
+ "loss": 0.2289,
3009
+ "step": 500
3010
+ }
3011
+ ],
3012
+ "logging_steps": 1.0,
3013
+ "max_steps": 520,
3014
+ "num_input_tokens_seen": 0,
3015
+ "num_train_epochs": 1,
3016
+ "save_steps": 500,
3017
+ "total_flos": 2.4945008316094874e+17,
3018
+ "train_batch_size": 16,
3019
+ "trial_name": null,
3020
+ "trial_params": null
3021
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42912442e5d8f9e398ee97dcde794c208655796c7c92721476a3581f306c2c4e
3
+ size 6264
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_3_0.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_3_1.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_3_2.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/unk_vqa_test_pred_merge.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
llava-v1.6-mistral-7b-unk-vqa-v1.1/checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
llava-v1.6-mistral-7b-unk-vqa-v1.1/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.37.2"
6
+ }
llava-v1.6-mistral-7b-unk-vqa-v1.1/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3fecd6689807ffc0ab1ce28cf9ca5512f68eae63cfd417ed82ec11dc4527bf4
3
+ size 262144128
llava-v1.6-mistral-7b-unk-vqa-v1.1/trainer_state.json ADDED
@@ -0,0 +1,3150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 520,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.25e-06,
14
+ "loss": 3.7473,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 2.5e-06,
20
+ "loss": 3.7223,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 3.7500000000000005e-06,
26
+ "loss": 2.4038,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 5e-06,
32
+ "loss": 1.1629,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 6.25e-06,
38
+ "loss": 0.5964,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 7.500000000000001e-06,
44
+ "loss": 0.4181,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 8.750000000000001e-06,
50
+ "loss": 0.4785,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1e-05,
56
+ "loss": 0.3043,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 1.125e-05,
62
+ "loss": 0.3688,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 1.25e-05,
68
+ "loss": 0.3231,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 1.375e-05,
74
+ "loss": 2.1367,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 1.5000000000000002e-05,
80
+ "loss": 2.2016,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 1.6250000000000002e-05,
86
+ "loss": 0.4149,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1.7500000000000002e-05,
92
+ "loss": 1.0182,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 1.8750000000000002e-05,
98
+ "loss": 0.6984,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 2e-05,
104
+ "loss": 0.5766,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.9999805729315383e-05,
110
+ "loss": 0.3989,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.999922292480975e-05,
116
+ "loss": 0.367,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.9998251609127465e-05,
122
+ "loss": 0.44,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.9996891820008165e-05,
128
+ "loss": 0.3184,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.9995143610285275e-05,
134
+ "loss": 0.3657,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.9993007047883988e-05,
140
+ "loss": 0.3184,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.999048221581858e-05,
146
+ "loss": 0.2976,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.05,
151
+ "learning_rate": 1.9987569212189224e-05,
152
+ "loss": 0.3187,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.998426815017817e-05,
158
+ "loss": 0.3374,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.9980579158045322e-05,
164
+ "loss": 0.3043,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.997650237912329e-05,
170
+ "loss": 0.3127,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 1.9972037971811802e-05,
176
+ "loss": 0.3154,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.06,
181
+ "learning_rate": 1.996718610957155e-05,
182
+ "loss": 0.296,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.06,
187
+ "learning_rate": 1.9961946980917457e-05,
188
+ "loss": 0.4204,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.9956320789411338e-05,
194
+ "loss": 0.365,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9950307753654016e-05,
200
+ "loss": 0.3546,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.99439081072768e-05,
206
+ "loss": 0.3308,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.07,
211
+ "learning_rate": 1.9937122098932428e-05,
212
+ "loss": 0.3251,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.07,
217
+ "learning_rate": 1.9929949992285397e-05,
218
+ "loss": 0.3876,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "learning_rate": 1.9922392066001724e-05,
224
+ "loss": 0.305,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.9914448613738107e-05,
230
+ "loss": 0.2708,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.9906119944130527e-05,
236
+ "loss": 0.3192,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9897406380782262e-05,
242
+ "loss": 0.3663,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.08,
247
+ "learning_rate": 1.9888308262251286e-05,
248
+ "loss": 0.4343,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.08,
253
+ "learning_rate": 1.9878825942037147e-05,
254
+ "loss": 0.3598,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9868959788567213e-05,
260
+ "loss": 0.3101,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.985871018518236e-05,
266
+ "loss": 0.3289,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.9848077530122083e-05,
272
+ "loss": 0.2666,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.09,
277
+ "learning_rate": 1.9837062236509013e-05,
278
+ "loss": 0.3743,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.09,
283
+ "learning_rate": 1.9825664732332886e-05,
284
+ "loss": 0.319,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.09,
289
+ "learning_rate": 1.981388546043388e-05,
290
+ "loss": 0.3083,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.9801724878485438e-05,
296
+ "loss": 0.2742,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9789183458976485e-05,
302
+ "loss": 0.2902,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.1,
307
+ "learning_rate": 1.977626168919305e-05,
308
+ "loss": 0.3808,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.1,
313
+ "learning_rate": 1.9762960071199334e-05,
314
+ "loss": 0.3679,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.1,
319
+ "learning_rate": 1.9749279121818235e-05,
320
+ "loss": 0.2926,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.9735219372611232e-05,
326
+ "loss": 0.341,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9720781369857747e-05,
332
+ "loss": 0.277,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.11,
337
+ "learning_rate": 1.970596567453391e-05,
338
+ "loss": 0.3394,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.11,
343
+ "learning_rate": 1.969077286229078e-05,
344
+ "loss": 0.3706,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.11,
349
+ "learning_rate": 1.9675203523431964e-05,
350
+ "loss": 0.3312,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.11,
355
+ "learning_rate": 1.9659258262890683e-05,
356
+ "loss": 0.3441,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.964293770020628e-05,
362
+ "loss": 0.2805,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.12,
367
+ "learning_rate": 1.962624246950012e-05,
368
+ "loss": 0.4209,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.12,
373
+ "learning_rate": 1.9609173219450998e-05,
374
+ "loss": 0.2951,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.12,
379
+ "learning_rate": 1.9591730613269878e-05,
380
+ "loss": 0.3099,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "learning_rate": 1.957391532867418e-05,
386
+ "loss": 0.3366,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.955572805786141e-05,
392
+ "loss": 0.3389,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.953716950748227e-05,
398
+ "loss": 0.3793,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.13,
403
+ "learning_rate": 1.9518240398613226e-05,
404
+ "loss": 0.309,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.13,
409
+ "learning_rate": 1.9498941466728462e-05,
410
+ "loss": 0.377,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.13,
415
+ "learning_rate": 1.947927346167132e-05,
416
+ "loss": 0.325,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.13,
421
+ "learning_rate": 1.945923714762516e-05,
422
+ "loss": 0.3787,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.9438833303083677e-05,
428
+ "loss": 0.2878,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.14,
433
+ "learning_rate": 1.9418062720820636e-05,
434
+ "loss": 0.3333,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.14,
439
+ "learning_rate": 1.9396926207859085e-05,
440
+ "loss": 0.2919,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.14,
445
+ "learning_rate": 1.9375424585439994e-05,
446
+ "loss": 0.3297,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.14,
451
+ "learning_rate": 1.935355868899034e-05,
452
+ "loss": 0.3355,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.9331329368090664e-05,
458
+ "loss": 0.3286,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.15,
463
+ "learning_rate": 1.9308737486442045e-05,
464
+ "loss": 0.3542,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.15,
469
+ "learning_rate": 1.9285783921832537e-05,
470
+ "loss": 0.3415,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.15,
475
+ "learning_rate": 1.926246956610309e-05,
476
+ "loss": 0.2879,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.15,
481
+ "learning_rate": 1.9238795325112867e-05,
482
+ "loss": 0.3777,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.15,
487
+ "learning_rate": 1.921476211870408e-05,
488
+ "loss": 0.3188,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.16,
493
+ "learning_rate": 1.9190370880666206e-05,
494
+ "loss": 0.3088,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.16,
499
+ "learning_rate": 1.9165622558699763e-05,
500
+ "loss": 0.3047,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.16,
505
+ "learning_rate": 1.9140518114379433e-05,
506
+ "loss": 0.3617,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.16,
511
+ "learning_rate": 1.9115058523116734e-05,
512
+ "loss": 0.3315,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.16,
517
+ "learning_rate": 1.908924477412211e-05,
518
+ "loss": 0.3732,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.17,
523
+ "learning_rate": 1.9063077870366504e-05,
524
+ "loss": 0.352,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.17,
529
+ "learning_rate": 1.903655882854237e-05,
530
+ "loss": 0.3583,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.17,
535
+ "learning_rate": 1.900968867902419e-05,
536
+ "loss": 0.3372,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.17,
541
+ "learning_rate": 1.898246846582844e-05,
542
+ "loss": 0.2925,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.17,
547
+ "learning_rate": 1.895489924657301e-05,
548
+ "loss": 0.2697,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.17,
553
+ "learning_rate": 1.8926982092436117e-05,
554
+ "loss": 0.3653,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.18,
559
+ "learning_rate": 1.8898718088114688e-05,
560
+ "loss": 0.2705,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.18,
565
+ "learning_rate": 1.887010833178222e-05,
566
+ "loss": 0.2846,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.18,
571
+ "learning_rate": 1.8841153935046098e-05,
572
+ "loss": 0.329,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.18,
577
+ "learning_rate": 1.8811856022904423e-05,
578
+ "loss": 0.3468,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.18,
583
+ "learning_rate": 1.8782215733702286e-05,
584
+ "loss": 0.3879,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.19,
589
+ "learning_rate": 1.8752234219087538e-05,
590
+ "loss": 0.2718,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.19,
595
+ "learning_rate": 1.8721912643966055e-05,
596
+ "loss": 0.269,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.19,
601
+ "learning_rate": 1.8691252186456465e-05,
602
+ "loss": 0.3551,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.19,
607
+ "learning_rate": 1.866025403784439e-05,
608
+ "loss": 0.3023,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.19,
613
+ "learning_rate": 1.862891940253613e-05,
614
+ "loss": 0.3975,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.2,
619
+ "learning_rate": 1.8597249498011906e-05,
620
+ "loss": 0.3149,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.2,
625
+ "learning_rate": 1.8565245554778516e-05,
626
+ "loss": 0.2837,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.2,
631
+ "learning_rate": 1.8532908816321557e-05,
632
+ "loss": 0.3284,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.2,
637
+ "learning_rate": 1.8500240539057093e-05,
638
+ "loss": 0.2755,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.2,
643
+ "learning_rate": 1.8467241992282842e-05,
644
+ "loss": 0.3491,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.21,
649
+ "learning_rate": 1.843391445812886e-05,
650
+ "loss": 0.3455,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.21,
655
+ "learning_rate": 1.8400259231507716e-05,
656
+ "loss": 0.3834,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.21,
661
+ "learning_rate": 1.83662776200642e-05,
662
+ "loss": 0.317,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.21,
667
+ "learning_rate": 1.833197094412449e-05,
668
+ "loss": 0.3171,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.21,
673
+ "learning_rate": 1.8297340536644877e-05,
674
+ "loss": 0.3372,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.22,
679
+ "learning_rate": 1.826238774315995e-05,
680
+ "loss": 0.307,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.22,
685
+ "learning_rate": 1.8227113921730336e-05,
686
+ "loss": 0.3899,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.22,
691
+ "learning_rate": 1.819152044288992e-05,
692
+ "loss": 0.3514,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.22,
697
+ "learning_rate": 1.8155608689592604e-05,
698
+ "loss": 0.2991,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.22,
703
+ "learning_rate": 1.811938005715857e-05,
704
+ "loss": 0.2913,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.23,
709
+ "learning_rate": 1.8082835953220055e-05,
710
+ "loss": 0.2639,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.23,
715
+ "learning_rate": 1.8045977797666685e-05,
716
+ "loss": 0.3344,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.23,
721
+ "learning_rate": 1.8008807022590283e-05,
722
+ "loss": 0.3501,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.23,
727
+ "learning_rate": 1.7971325072229227e-05,
728
+ "loss": 0.3369,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.23,
733
+ "learning_rate": 1.7933533402912354e-05,
734
+ "loss": 0.3157,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.23,
739
+ "learning_rate": 1.7895433483002356e-05,
740
+ "loss": 0.2841,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.24,
745
+ "learning_rate": 1.785702679283874e-05,
746
+ "loss": 0.347,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.24,
751
+ "learning_rate": 1.78183148246803e-05,
752
+ "loss": 0.3704,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.24,
757
+ "learning_rate": 1.777929908264715e-05,
758
+ "loss": 0.356,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.24,
763
+ "learning_rate": 1.7739981082662275e-05,
764
+ "loss": 0.3221,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.24,
769
+ "learning_rate": 1.7700362352392632e-05,
770
+ "loss": 0.3251,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.25,
775
+ "learning_rate": 1.766044443118978e-05,
776
+ "loss": 0.2718,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.25,
781
+ "learning_rate": 1.762022887003011e-05,
782
+ "loss": 0.4306,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.25,
787
+ "learning_rate": 1.757971723145453e-05,
788
+ "loss": 0.3108,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.25,
793
+ "learning_rate": 1.75389110895078e-05,
794
+ "loss": 0.3185,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.25,
799
+ "learning_rate": 1.7497812029677344e-05,
800
+ "loss": 0.328,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.26,
805
+ "learning_rate": 1.7456421648831658e-05,
806
+ "loss": 0.3537,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.26,
811
+ "learning_rate": 1.741474155515827e-05,
812
+ "loss": 0.3029,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.26,
817
+ "learning_rate": 1.737277336810124e-05,
818
+ "loss": 0.398,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.26,
823
+ "learning_rate": 1.7330518718298263e-05,
824
+ "loss": 0.3295,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.26,
829
+ "learning_rate": 1.7287979247517285e-05,
830
+ "loss": 0.2651,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.27,
835
+ "learning_rate": 1.7245156608592727e-05,
836
+ "loss": 0.3531,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.27,
841
+ "learning_rate": 1.7202052465361268e-05,
842
+ "loss": 0.2723,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.27,
847
+ "learning_rate": 1.7158668492597186e-05,
848
+ "loss": 0.3286,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.27,
853
+ "learning_rate": 1.7115006375947304e-05,
854
+ "loss": 0.3359,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.27,
859
+ "learning_rate": 1.7071067811865477e-05,
860
+ "loss": 0.2959,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.28,
865
+ "learning_rate": 1.7026854507546694e-05,
866
+ "loss": 0.3241,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.28,
871
+ "learning_rate": 1.698236818086073e-05,
872
+ "loss": 0.3472,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.28,
877
+ "learning_rate": 1.693761056028542e-05,
878
+ "loss": 0.3085,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.28,
883
+ "learning_rate": 1.689258338483947e-05,
884
+ "loss": 0.2469,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.28,
889
+ "learning_rate": 1.6847288404014937e-05,
890
+ "loss": 0.3253,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.28,
895
+ "learning_rate": 1.6801727377709195e-05,
896
+ "loss": 0.4326,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.29,
901
+ "learning_rate": 1.6755902076156606e-05,
902
+ "loss": 0.2812,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.29,
907
+ "learning_rate": 1.67098142798597e-05,
908
+ "loss": 0.2828,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.29,
913
+ "learning_rate": 1.6663465779520042e-05,
914
+ "loss": 0.3705,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.29,
919
+ "learning_rate": 1.6616858375968596e-05,
920
+ "loss": 0.3308,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.29,
925
+ "learning_rate": 1.6569993880095807e-05,
926
+ "loss": 0.3065,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.3,
931
+ "learning_rate": 1.6522874112781213e-05,
932
+ "loss": 0.2854,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.3,
937
+ "learning_rate": 1.6475500904822707e-05,
938
+ "loss": 0.3087,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.3,
943
+ "learning_rate": 1.6427876096865394e-05,
944
+ "loss": 0.396,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.3,
949
+ "learning_rate": 1.6380001539330088e-05,
950
+ "loss": 0.3022,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.3,
955
+ "learning_rate": 1.6331879092341402e-05,
956
+ "loss": 0.3622,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.31,
961
+ "learning_rate": 1.6283510625655474e-05,
962
+ "loss": 0.3552,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.31,
967
+ "learning_rate": 1.6234898018587336e-05,
968
+ "loss": 0.3417,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.31,
973
+ "learning_rate": 1.6186043159937884e-05,
974
+ "loss": 0.3246,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.31,
979
+ "learning_rate": 1.6136947947920477e-05,
980
+ "loss": 0.3281,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.31,
985
+ "learning_rate": 1.608761429008721e-05,
986
+ "loss": 0.3224,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.32,
991
+ "learning_rate": 1.6038044103254775e-05,
992
+ "loss": 0.2562,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.32,
997
+ "learning_rate": 1.5988239313430004e-05,
998
+ "loss": 0.2622,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.32,
1003
+ "learning_rate": 1.5938201855735017e-05,
1004
+ "loss": 0.3247,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.32,
1009
+ "learning_rate": 1.5887933674332048e-05,
1010
+ "loss": 0.3902,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.32,
1015
+ "learning_rate": 1.5837436722347902e-05,
1016
+ "loss": 0.3079,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.33,
1021
+ "learning_rate": 1.578671296179806e-05,
1022
+ "loss": 0.2822,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.33,
1027
+ "learning_rate": 1.573576436351046e-05,
1028
+ "loss": 0.3139,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.33,
1033
+ "learning_rate": 1.5684592907048925e-05,
1034
+ "loss": 0.2522,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.33,
1039
+ "learning_rate": 1.563320058063622e-05,
1040
+ "loss": 0.2726,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.33,
1045
+ "learning_rate": 1.5581589381076843e-05,
1046
+ "loss": 0.3524,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.33,
1051
+ "learning_rate": 1.5529761313679396e-05,
1052
+ "loss": 0.2888,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.34,
1057
+ "learning_rate": 1.5477718392178716e-05,
1058
+ "loss": 0.3418,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.34,
1063
+ "learning_rate": 1.5425462638657597e-05,
1064
+ "loss": 0.322,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.34,
1069
+ "learning_rate": 1.5372996083468242e-05,
1070
+ "loss": 0.279,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.34,
1075
+ "learning_rate": 1.5320320765153367e-05,
1076
+ "loss": 0.3396,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.34,
1081
+ "learning_rate": 1.526743873036701e-05,
1082
+ "loss": 0.4238,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.35,
1087
+ "learning_rate": 1.5214352033794981e-05,
1088
+ "loss": 0.3893,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.35,
1093
+ "learning_rate": 1.5161062738075068e-05,
1094
+ "loss": 0.3877,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.35,
1099
+ "learning_rate": 1.5107572913716859e-05,
1100
+ "loss": 0.3096,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.35,
1105
+ "learning_rate": 1.505388463902131e-05,
1106
+ "loss": 0.2542,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.35,
1111
+ "learning_rate": 1.5000000000000002e-05,
1112
+ "loss": 0.3074,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.36,
1117
+ "learning_rate": 1.4945921090294076e-05,
1118
+ "loss": 0.318,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.36,
1123
+ "learning_rate": 1.4891650011092896e-05,
1124
+ "loss": 0.3095,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.36,
1129
+ "learning_rate": 1.4837188871052399e-05,
1130
+ "loss": 0.347,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.36,
1135
+ "learning_rate": 1.4782539786213184e-05,
1136
+ "loss": 0.3056,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.36,
1141
+ "learning_rate": 1.4727704879918272e-05,
1142
+ "loss": 0.3651,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.37,
1147
+ "learning_rate": 1.4672686282730622e-05,
1148
+ "loss": 0.361,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.37,
1153
+ "learning_rate": 1.4617486132350343e-05,
1154
+ "loss": 0.3252,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.37,
1159
+ "learning_rate": 1.4562106573531632e-05,
1160
+ "loss": 0.3671,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.37,
1165
+ "learning_rate": 1.4506549757999456e-05,
1166
+ "loss": 0.2934,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.37,
1171
+ "learning_rate": 1.4450817844365924e-05,
1172
+ "loss": 0.3612,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.38,
1177
+ "learning_rate": 1.4394912998046451e-05,
1178
+ "loss": 0.3131,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.38,
1183
+ "learning_rate": 1.4338837391175582e-05,
1184
+ "loss": 0.3875,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.38,
1189
+ "learning_rate": 1.4282593202522627e-05,
1190
+ "loss": 0.2545,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.38,
1195
+ "learning_rate": 1.4226182617406996e-05,
1196
+ "loss": 0.2573,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.38,
1201
+ "learning_rate": 1.4169607827613284e-05,
1202
+ "loss": 0.3089,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.38,
1207
+ "learning_rate": 1.4112871031306118e-05,
1208
+ "loss": 0.3096,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.39,
1213
+ "learning_rate": 1.4055974432944753e-05,
1214
+ "loss": 0.3481,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.39,
1219
+ "learning_rate": 1.3998920243197408e-05,
1220
+ "loss": 0.3076,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.39,
1225
+ "learning_rate": 1.3941710678855396e-05,
1226
+ "loss": 0.3079,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.39,
1231
+ "learning_rate": 1.3884347962746949e-05,
1232
+ "loss": 0.3306,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.39,
1237
+ "learning_rate": 1.3826834323650899e-05,
1238
+ "loss": 0.3745,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.4,
1243
+ "learning_rate": 1.3769171996210053e-05,
1244
+ "loss": 0.2773,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.4,
1249
+ "learning_rate": 1.371136322084438e-05,
1250
+ "loss": 0.2897,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.4,
1255
+ "learning_rate": 1.3653410243663953e-05,
1256
+ "loss": 0.3391,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.4,
1261
+ "learning_rate": 1.3595315316381676e-05,
1262
+ "loss": 0.2885,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.4,
1267
+ "learning_rate": 1.3537080696225815e-05,
1268
+ "loss": 0.3336,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.41,
1273
+ "learning_rate": 1.3478708645852272e-05,
1274
+ "loss": 0.2904,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.41,
1279
+ "learning_rate": 1.342020143325669e-05,
1280
+ "loss": 0.2822,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.41,
1285
+ "learning_rate": 1.336156133168631e-05,
1286
+ "loss": 0.369,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.41,
1291
+ "learning_rate": 1.3302790619551673e-05,
1292
+ "loss": 0.3387,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.41,
1297
+ "learning_rate": 1.3243891580338074e-05,
1298
+ "loss": 0.3428,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.42,
1303
+ "learning_rate": 1.3184866502516846e-05,
1304
+ "loss": 0.3211,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.42,
1309
+ "learning_rate": 1.3125717679456447e-05,
1310
+ "loss": 0.2601,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.42,
1315
+ "learning_rate": 1.3066447409333345e-05,
1316
+ "loss": 0.3782,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.42,
1321
+ "learning_rate": 1.300705799504273e-05,
1322
+ "loss": 0.2641,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.42,
1327
+ "learning_rate": 1.2947551744109044e-05,
1328
+ "loss": 0.3129,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.42,
1333
+ "learning_rate": 1.28879309685963e-05,
1334
+ "loss": 0.3096,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.43,
1339
+ "learning_rate": 1.2828197985018276e-05,
1340
+ "loss": 0.3007,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.43,
1345
+ "learning_rate": 1.2768355114248493e-05,
1346
+ "loss": 0.3149,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.43,
1351
+ "learning_rate": 1.2708404681430054e-05,
1352
+ "loss": 0.3493,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.43,
1357
+ "learning_rate": 1.2648349015885272e-05,
1358
+ "loss": 0.3406,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.43,
1363
+ "learning_rate": 1.2588190451025209e-05,
1364
+ "loss": 0.301,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.44,
1369
+ "learning_rate": 1.2527931324258975e-05,
1370
+ "loss": 0.3252,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.44,
1375
+ "learning_rate": 1.2467573976902936e-05,
1376
+ "loss": 0.374,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.44,
1381
+ "learning_rate": 1.2407120754089733e-05,
1382
+ "loss": 0.2819,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.44,
1387
+ "learning_rate": 1.2346574004677154e-05,
1388
+ "loss": 0.2936,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.44,
1393
+ "learning_rate": 1.2285936081156897e-05,
1394
+ "loss": 0.3504,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.45,
1399
+ "learning_rate": 1.2225209339563144e-05,
1400
+ "loss": 0.2735,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.45,
1405
+ "learning_rate": 1.2164396139381029e-05,
1406
+ "loss": 0.2653,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.45,
1411
+ "learning_rate": 1.210349884345496e-05,
1412
+ "loss": 0.2795,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.45,
1417
+ "learning_rate": 1.2042519817896805e-05,
1418
+ "loss": 0.2784,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.45,
1423
+ "learning_rate": 1.1981461431993978e-05,
1424
+ "loss": 0.2865,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.46,
1429
+ "learning_rate": 1.1920326058117364e-05,
1430
+ "loss": 0.3273,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.46,
1435
+ "learning_rate": 1.1859116071629148e-05,
1436
+ "loss": 0.3055,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.46,
1441
+ "learning_rate": 1.1797833850790527e-05,
1442
+ "loss": 0.2781,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.46,
1447
+ "learning_rate": 1.1736481776669307e-05,
1448
+ "loss": 0.2747,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.46,
1453
+ "learning_rate": 1.1675062233047365e-05,
1454
+ "loss": 0.2615,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.47,
1459
+ "learning_rate": 1.1613577606328068e-05,
1460
+ "loss": 0.2741,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.47,
1465
+ "learning_rate": 1.1552030285443516e-05,
1466
+ "loss": 0.4037,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.47,
1471
+ "learning_rate": 1.1490422661761744e-05,
1472
+ "loss": 0.3396,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.47,
1477
+ "learning_rate": 1.1428757128993801e-05,
1478
+ "loss": 0.3196,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.47,
1483
+ "learning_rate": 1.1367036083100735e-05,
1484
+ "loss": 0.3166,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.47,
1489
+ "learning_rate": 1.130526192220052e-05,
1490
+ "loss": 0.3005,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.48,
1495
+ "learning_rate": 1.1243437046474854e-05,
1496
+ "loss": 0.34,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.48,
1501
+ "learning_rate": 1.118156385807593e-05,
1502
+ "loss": 0.2704,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.48,
1507
+ "learning_rate": 1.1119644761033079e-05,
1508
+ "loss": 0.3103,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.48,
1513
+ "learning_rate": 1.105768216115938e-05,
1514
+ "loss": 0.2643,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.48,
1519
+ "learning_rate": 1.0995678465958168e-05,
1520
+ "loss": 0.2804,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.49,
1525
+ "learning_rate": 1.0933636084529507e-05,
1526
+ "loss": 0.3296,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.49,
1531
+ "learning_rate": 1.0871557427476585e-05,
1532
+ "loss": 0.2671,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.49,
1537
+ "learning_rate": 1.0809444906812034e-05,
1538
+ "loss": 0.3268,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.49,
1543
+ "learning_rate": 1.0747300935864245e-05,
1544
+ "loss": 0.3031,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.49,
1549
+ "learning_rate": 1.0685127929183567e-05,
1550
+ "loss": 0.3609,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.5,
1555
+ "learning_rate": 1.0622928302448523e-05,
1556
+ "loss": 0.3359,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.5,
1561
+ "learning_rate": 1.0560704472371919e-05,
1562
+ "loss": 0.2838,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.5,
1567
+ "learning_rate": 1.0498458856606972e-05,
1568
+ "loss": 0.3347,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.5,
1573
+ "learning_rate": 1.0436193873653362e-05,
1574
+ "loss": 0.3121,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.5,
1579
+ "learning_rate": 1.037391194276326e-05,
1580
+ "loss": 0.2965,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.51,
1585
+ "learning_rate": 1.0311615483847333e-05,
1586
+ "loss": 0.3587,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.51,
1591
+ "learning_rate": 1.0249306917380731e-05,
1592
+ "loss": 0.3694,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.51,
1597
+ "learning_rate": 1.0186988664309023e-05,
1598
+ "loss": 0.3086,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.51,
1603
+ "learning_rate": 1.0124663145954152e-05,
1604
+ "loss": 0.2684,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.51,
1609
+ "learning_rate": 1.0062332783920337e-05,
1610
+ "loss": 0.3054,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.52,
1615
+ "learning_rate": 1e-05,
1616
+ "loss": 0.3558,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.52,
1621
+ "learning_rate": 9.937667216079665e-06,
1622
+ "loss": 0.3235,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.52,
1627
+ "learning_rate": 9.87533685404585e-06,
1628
+ "loss": 0.3369,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.52,
1633
+ "learning_rate": 9.81301133569098e-06,
1634
+ "loss": 0.3373,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.52,
1639
+ "learning_rate": 9.750693082619274e-06,
1640
+ "loss": 0.2917,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.53,
1645
+ "learning_rate": 9.68838451615267e-06,
1646
+ "loss": 0.2838,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.53,
1651
+ "learning_rate": 9.626088057236745e-06,
1652
+ "loss": 0.3127,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.53,
1657
+ "learning_rate": 9.563806126346643e-06,
1658
+ "loss": 0.3115,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.53,
1663
+ "learning_rate": 9.501541143393028e-06,
1664
+ "loss": 0.3445,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.53,
1669
+ "learning_rate": 9.439295527628083e-06,
1670
+ "loss": 0.3708,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.53,
1675
+ "learning_rate": 9.377071697551479e-06,
1676
+ "loss": 0.2742,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.54,
1681
+ "learning_rate": 9.314872070816435e-06,
1682
+ "loss": 0.3338,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.54,
1687
+ "learning_rate": 9.252699064135759e-06,
1688
+ "loss": 0.252,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.54,
1693
+ "learning_rate": 9.190555093187968e-06,
1694
+ "loss": 0.2629,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.54,
1699
+ "learning_rate": 9.128442572523418e-06,
1700
+ "loss": 0.3567,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.54,
1705
+ "learning_rate": 9.066363915470494e-06,
1706
+ "loss": 0.3941,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.55,
1711
+ "learning_rate": 9.004321534041836e-06,
1712
+ "loss": 0.34,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.55,
1717
+ "learning_rate": 8.942317838840625e-06,
1718
+ "loss": 0.3793,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.55,
1723
+ "learning_rate": 8.880355238966923e-06,
1724
+ "loss": 0.3451,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.55,
1729
+ "learning_rate": 8.818436141924072e-06,
1730
+ "loss": 0.2892,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.55,
1735
+ "learning_rate": 8.756562953525151e-06,
1736
+ "loss": 0.3142,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.56,
1741
+ "learning_rate": 8.694738077799487e-06,
1742
+ "loss": 0.2782,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.56,
1747
+ "learning_rate": 8.632963916899268e-06,
1748
+ "loss": 0.2284,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.56,
1753
+ "learning_rate": 8.571242871006202e-06,
1754
+ "loss": 0.3189,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.56,
1759
+ "learning_rate": 8.509577338238255e-06,
1760
+ "loss": 0.2888,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.56,
1765
+ "learning_rate": 8.447969714556484e-06,
1766
+ "loss": 0.3124,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.57,
1771
+ "learning_rate": 8.386422393671934e-06,
1772
+ "loss": 0.3607,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.57,
1777
+ "learning_rate": 8.324937766952638e-06,
1778
+ "loss": 0.3074,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.57,
1783
+ "learning_rate": 8.263518223330698e-06,
1784
+ "loss": 0.3403,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.57,
1789
+ "learning_rate": 8.202166149209475e-06,
1790
+ "loss": 0.3296,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.57,
1795
+ "learning_rate": 8.140883928370855e-06,
1796
+ "loss": 0.2788,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.57,
1801
+ "learning_rate": 8.079673941882639e-06,
1802
+ "loss": 0.3306,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.58,
1807
+ "learning_rate": 8.018538568006027e-06,
1808
+ "loss": 0.3092,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.58,
1813
+ "learning_rate": 7.957480182103198e-06,
1814
+ "loss": 0.3324,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.58,
1819
+ "learning_rate": 7.896501156545044e-06,
1820
+ "loss": 0.293,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.58,
1825
+ "learning_rate": 7.835603860618973e-06,
1826
+ "loss": 0.408,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.58,
1831
+ "learning_rate": 7.774790660436857e-06,
1832
+ "loss": 0.3254,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.59,
1837
+ "learning_rate": 7.714063918843106e-06,
1838
+ "loss": 0.2916,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.59,
1843
+ "learning_rate": 7.653425995322852e-06,
1844
+ "loss": 0.3205,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.59,
1849
+ "learning_rate": 7.592879245910273e-06,
1850
+ "loss": 0.274,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.59,
1855
+ "learning_rate": 7.532426023097063e-06,
1856
+ "loss": 0.2606,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.59,
1861
+ "learning_rate": 7.472068675741024e-06,
1862
+ "loss": 0.3173,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.6,
1867
+ "learning_rate": 7.411809548974792e-06,
1868
+ "loss": 0.2818,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.6,
1873
+ "learning_rate": 7.3516509841147276e-06,
1874
+ "loss": 0.3386,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.6,
1879
+ "learning_rate": 7.291595318569951e-06,
1880
+ "loss": 0.3264,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.6,
1885
+ "learning_rate": 7.2316448857515076e-06,
1886
+ "loss": 0.233,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.6,
1891
+ "learning_rate": 7.171802014981726e-06,
1892
+ "loss": 0.2876,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.61,
1897
+ "learning_rate": 7.112069031403704e-06,
1898
+ "loss": 0.2514,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.61,
1903
+ "learning_rate": 7.052448255890958e-06,
1904
+ "loss": 0.3363,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.61,
1909
+ "learning_rate": 6.992942004957271e-06,
1910
+ "loss": 0.3113,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.61,
1915
+ "learning_rate": 6.933552590666659e-06,
1916
+ "loss": 0.2884,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.61,
1921
+ "learning_rate": 6.874282320543557e-06,
1922
+ "loss": 0.3039,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.62,
1927
+ "learning_rate": 6.815133497483157e-06,
1928
+ "loss": 0.2625,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.62,
1933
+ "learning_rate": 6.7561084196619306e-06,
1934
+ "loss": 0.3116,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.62,
1939
+ "learning_rate": 6.697209380448333e-06,
1940
+ "loss": 0.3497,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.62,
1945
+ "learning_rate": 6.638438668313695e-06,
1946
+ "loss": 0.319,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.62,
1951
+ "learning_rate": 6.579798566743314e-06,
1952
+ "loss": 0.3007,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.62,
1957
+ "learning_rate": 6.521291354147727e-06,
1958
+ "loss": 0.2998,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.63,
1963
+ "learning_rate": 6.462919303774186e-06,
1964
+ "loss": 0.2918,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.63,
1969
+ "learning_rate": 6.404684683618325e-06,
1970
+ "loss": 0.2604,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.63,
1975
+ "learning_rate": 6.34658975633605e-06,
1976
+ "loss": 0.3346,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.63,
1981
+ "learning_rate": 6.288636779155621e-06,
1982
+ "loss": 0.3309,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.63,
1987
+ "learning_rate": 6.230828003789949e-06,
1988
+ "loss": 0.4091,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.64,
1993
+ "learning_rate": 6.173165676349103e-06,
1994
+ "loss": 0.301,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.64,
1999
+ "learning_rate": 6.115652037253054e-06,
2000
+ "loss": 0.3056,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.64,
2005
+ "learning_rate": 6.058289321144608e-06,
2006
+ "loss": 0.2798,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.64,
2011
+ "learning_rate": 6.001079756802592e-06,
2012
+ "loss": 0.2976,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.64,
2017
+ "learning_rate": 5.944025567055251e-06,
2018
+ "loss": 0.3189,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.65,
2023
+ "learning_rate": 5.887128968693887e-06,
2024
+ "loss": 0.3335,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.65,
2029
+ "learning_rate": 5.830392172386723e-06,
2030
+ "loss": 0.3092,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.65,
2035
+ "learning_rate": 5.773817382593008e-06,
2036
+ "loss": 0.3579,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.65,
2041
+ "learning_rate": 5.717406797477371e-06,
2042
+ "loss": 0.2755,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.65,
2047
+ "learning_rate": 5.66116260882442e-06,
2048
+ "loss": 0.2702,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.66,
2053
+ "learning_rate": 5.6050870019535496e-06,
2054
+ "loss": 0.3047,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.66,
2059
+ "learning_rate": 5.549182155634076e-06,
2060
+ "loss": 0.3235,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.66,
2065
+ "learning_rate": 5.493450242000546e-06,
2066
+ "loss": 0.271,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.66,
2071
+ "learning_rate": 5.43789342646837e-06,
2072
+ "loss": 0.2651,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.66,
2077
+ "learning_rate": 5.382513867649663e-06,
2078
+ "loss": 0.2757,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.67,
2083
+ "learning_rate": 5.32731371726938e-06,
2084
+ "loss": 0.282,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.67,
2089
+ "learning_rate": 5.2722951200817315e-06,
2090
+ "loss": 0.3017,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.67,
2095
+ "learning_rate": 5.217460213786822e-06,
2096
+ "loss": 0.248,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.67,
2101
+ "learning_rate": 5.1628111289476025e-06,
2102
+ "loss": 0.3195,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.67,
2107
+ "learning_rate": 5.108349988907111e-06,
2108
+ "loss": 0.3289,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.68,
2113
+ "learning_rate": 5.054078909705926e-06,
2114
+ "loss": 0.3232,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.68,
2119
+ "learning_rate": 5.000000000000003e-06,
2120
+ "loss": 0.3053,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.68,
2125
+ "learning_rate": 4.946115360978696e-06,
2126
+ "loss": 0.2811,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.68,
2131
+ "learning_rate": 4.892427086283147e-06,
2132
+ "loss": 0.2756,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.68,
2137
+ "learning_rate": 4.838937261924933e-06,
2138
+ "loss": 0.3213,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.68,
2143
+ "learning_rate": 4.78564796620502e-06,
2144
+ "loss": 0.3865,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.69,
2149
+ "learning_rate": 4.732561269632992e-06,
2150
+ "loss": 0.2899,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.69,
2155
+ "learning_rate": 4.679679234846636e-06,
2156
+ "loss": 0.3323,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.69,
2161
+ "learning_rate": 4.627003916531761e-06,
2162
+ "loss": 0.2954,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.69,
2167
+ "learning_rate": 4.5745373613424075e-06,
2168
+ "loss": 0.2722,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.69,
2173
+ "learning_rate": 4.522281607821288e-06,
2174
+ "loss": 0.2635,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.7,
2179
+ "learning_rate": 4.470238686320606e-06,
2180
+ "loss": 0.3068,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.7,
2185
+ "learning_rate": 4.418410618923163e-06,
2186
+ "loss": 0.3263,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.7,
2191
+ "learning_rate": 4.3667994193637794e-06,
2192
+ "loss": 0.2904,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.7,
2197
+ "learning_rate": 4.315407092951078e-06,
2198
+ "loss": 0.3106,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.7,
2203
+ "learning_rate": 4.264235636489542e-06,
2204
+ "loss": 0.3729,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.71,
2209
+ "learning_rate": 4.213287038201943e-06,
2210
+ "loss": 0.2611,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.71,
2215
+ "learning_rate": 4.162563277652104e-06,
2216
+ "loss": 0.3506,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.71,
2221
+ "learning_rate": 4.112066325667954e-06,
2222
+ "loss": 0.263,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.71,
2227
+ "learning_rate": 4.061798144264986e-06,
2228
+ "loss": 0.2519,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.71,
2233
+ "learning_rate": 4.0117606865699975e-06,
2234
+ "loss": 0.319,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.72,
2239
+ "learning_rate": 3.961955896745224e-06,
2240
+ "loss": 0.3457,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.72,
2245
+ "learning_rate": 3.912385709912794e-06,
2246
+ "loss": 0.2825,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.72,
2251
+ "learning_rate": 3.8630520520795275e-06,
2252
+ "loss": 0.2782,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.72,
2257
+ "learning_rate": 3.8139568400621184e-06,
2258
+ "loss": 0.2852,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.72,
2263
+ "learning_rate": 3.7651019814126656e-06,
2264
+ "loss": 0.2699,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.72,
2269
+ "learning_rate": 3.7164893743445274e-06,
2270
+ "loss": 0.2634,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.73,
2275
+ "learning_rate": 3.6681209076586035e-06,
2276
+ "loss": 0.2939,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.73,
2281
+ "learning_rate": 3.619998460669916e-06,
2282
+ "loss": 0.3233,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.73,
2287
+ "learning_rate": 3.5721239031346067e-06,
2288
+ "loss": 0.2729,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.73,
2293
+ "learning_rate": 3.5244990951772972e-06,
2294
+ "loss": 0.3827,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.73,
2299
+ "learning_rate": 3.4771258872187917e-06,
2300
+ "loss": 0.3219,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.74,
2305
+ "learning_rate": 3.4300061199041967e-06,
2306
+ "loss": 0.2812,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.74,
2311
+ "learning_rate": 3.3831416240314085e-06,
2312
+ "loss": 0.2616,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.74,
2317
+ "learning_rate": 3.3365342204799613e-06,
2318
+ "loss": 0.3082,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.74,
2323
+ "learning_rate": 3.290185720140301e-06,
2324
+ "loss": 0.2526,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.74,
2329
+ "learning_rate": 3.2440979238433977e-06,
2330
+ "loss": 0.3027,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.75,
2335
+ "learning_rate": 3.1982726222908046e-06,
2336
+ "loss": 0.2902,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.75,
2341
+ "learning_rate": 3.152711595985065e-06,
2342
+ "loss": 0.283,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.75,
2347
+ "learning_rate": 3.10741661516053e-06,
2348
+ "loss": 0.238,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.75,
2353
+ "learning_rate": 3.0623894397145837e-06,
2354
+ "loss": 0.2777,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.75,
2359
+ "learning_rate": 3.017631819139273e-06,
2360
+ "loss": 0.2997,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.76,
2365
+ "learning_rate": 2.9731454924533086e-06,
2366
+ "loss": 0.317,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.76,
2371
+ "learning_rate": 2.9289321881345257e-06,
2372
+ "loss": 0.2685,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.76,
2377
+ "learning_rate": 2.884993624052701e-06,
2378
+ "loss": 0.2233,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.76,
2383
+ "learning_rate": 2.8413315074028157e-06,
2384
+ "loss": 0.2934,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.76,
2389
+ "learning_rate": 2.7979475346387363e-06,
2390
+ "loss": 0.2844,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.77,
2395
+ "learning_rate": 2.7548433914072736e-06,
2396
+ "loss": 0.3373,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.77,
2401
+ "learning_rate": 2.712020752482717e-06,
2402
+ "loss": 0.3245,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.77,
2407
+ "learning_rate": 2.669481281701739e-06,
2408
+ "loss": 0.3674,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.77,
2413
+ "learning_rate": 2.6272266318987606e-06,
2414
+ "loss": 0.3053,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.77,
2419
+ "learning_rate": 2.5852584448417327e-06,
2420
+ "loss": 0.3318,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.78,
2425
+ "learning_rate": 2.5435783511683444e-06,
2426
+ "loss": 0.2434,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.78,
2431
+ "learning_rate": 2.502187970322657e-06,
2432
+ "loss": 0.2829,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.78,
2437
+ "learning_rate": 2.461088910492202e-06,
2438
+ "loss": 0.2951,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.78,
2443
+ "learning_rate": 2.420282768545469e-06,
2444
+ "loss": 0.2691,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.78,
2449
+ "learning_rate": 2.3797711299698924e-06,
2450
+ "loss": 0.238,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.78,
2455
+ "learning_rate": 2.339555568810221e-06,
2456
+ "loss": 0.437,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.79,
2461
+ "learning_rate": 2.2996376476073724e-06,
2462
+ "loss": 0.3255,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.79,
2467
+ "learning_rate": 2.2600189173377263e-06,
2468
+ "loss": 0.3383,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.79,
2473
+ "learning_rate": 2.2207009173528528e-06,
2474
+ "loss": 0.2849,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.79,
2479
+ "learning_rate": 2.1816851753197023e-06,
2480
+ "loss": 0.3324,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.79,
2485
+ "learning_rate": 2.1429732071612653e-06,
2486
+ "loss": 0.298,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.8,
2491
+ "learning_rate": 2.104566516997647e-06,
2492
+ "loss": 0.2391,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.8,
2497
+ "learning_rate": 2.0664665970876496e-06,
2498
+ "loss": 0.2806,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.8,
2503
+ "learning_rate": 2.0286749277707783e-06,
2504
+ "loss": 0.3077,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.8,
2509
+ "learning_rate": 1.9911929774097216e-06,
2510
+ "loss": 0.3469,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.8,
2515
+ "learning_rate": 1.9540222023333165e-06,
2516
+ "loss": 0.3025,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.81,
2521
+ "learning_rate": 1.9171640467799478e-06,
2522
+ "loss": 0.3226,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.81,
2527
+ "learning_rate": 1.880619942841435e-06,
2528
+ "loss": 0.2776,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.81,
2533
+ "learning_rate": 1.8443913104073984e-06,
2534
+ "loss": 0.2289,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.81,
2539
+ "learning_rate": 1.808479557110081e-06,
2540
+ "loss": 0.2402,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.81,
2545
+ "learning_rate": 1.7728860782696666e-06,
2546
+ "loss": 0.3265,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.82,
2551
+ "learning_rate": 1.7376122568400533e-06,
2552
+ "loss": 0.2353,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.82,
2557
+ "learning_rate": 1.7026594633551252e-06,
2558
+ "loss": 0.2629,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.82,
2563
+ "learning_rate": 1.6680290558755119e-06,
2564
+ "loss": 0.3611,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.82,
2569
+ "learning_rate": 1.6337223799358025e-06,
2570
+ "loss": 0.3559,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.82,
2575
+ "learning_rate": 1.599740768492286e-06,
2576
+ "loss": 0.3488,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.82,
2581
+ "learning_rate": 1.566085541871145e-06,
2582
+ "loss": 0.3067,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.83,
2587
+ "learning_rate": 1.5327580077171589e-06,
2588
+ "loss": 0.3063,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.83,
2593
+ "learning_rate": 1.499759460942909e-06,
2594
+ "loss": 0.2918,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.83,
2599
+ "learning_rate": 1.467091183678444e-06,
2600
+ "loss": 0.2416,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.83,
2605
+ "learning_rate": 1.4347544452214869e-06,
2606
+ "loss": 0.2829,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.83,
2611
+ "learning_rate": 1.4027505019880972e-06,
2612
+ "loss": 0.278,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.84,
2617
+ "learning_rate": 1.3710805974638697e-06,
2618
+ "loss": 0.3117,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.84,
2623
+ "learning_rate": 1.339745962155613e-06,
2624
+ "loss": 0.2856,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.84,
2629
+ "learning_rate": 1.3087478135435361e-06,
2630
+ "loss": 0.2803,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.84,
2635
+ "learning_rate": 1.278087356033947e-06,
2636
+ "loss": 0.2639,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.84,
2641
+ "learning_rate": 1.2477657809124632e-06,
2642
+ "loss": 0.3482,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.85,
2647
+ "learning_rate": 1.2177842662977136e-06,
2648
+ "loss": 0.308,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.85,
2653
+ "learning_rate": 1.188143977095576e-06,
2654
+ "loss": 0.2487,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.85,
2659
+ "learning_rate": 1.1588460649539036e-06,
2660
+ "loss": 0.2937,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.85,
2665
+ "learning_rate": 1.129891668217783e-06,
2666
+ "loss": 0.2821,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.85,
2671
+ "learning_rate": 1.1012819118853147e-06,
2672
+ "loss": 0.2694,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.86,
2677
+ "learning_rate": 1.073017907563887e-06,
2678
+ "loss": 0.317,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.86,
2683
+ "learning_rate": 1.0451007534269908e-06,
2684
+ "loss": 0.3102,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.86,
2689
+ "learning_rate": 1.0175315341715598e-06,
2690
+ "loss": 0.3156,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.86,
2695
+ "learning_rate": 9.903113209758098e-07,
2696
+ "loss": 0.2957,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.86,
2701
+ "learning_rate": 9.634411714576353e-07,
2702
+ "loss": 0.2966,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.87,
2707
+ "learning_rate": 9.369221296335007e-07,
2708
+ "loss": 0.3048,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.87,
2713
+ "learning_rate": 9.107552258778907e-07,
2714
+ "loss": 0.3222,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.87,
2719
+ "learning_rate": 8.849414768832687e-07,
2720
+ "loss": 0.2689,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.87,
2725
+ "learning_rate": 8.5948188562057e-07,
2726
+ "loss": 0.2808,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.87,
2731
+ "learning_rate": 8.343774413002382e-07,
2732
+ "loss": 0.2847,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.88,
2737
+ "learning_rate": 8.096291193337935e-07,
2738
+ "loss": 0.3227,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.88,
2743
+ "learning_rate": 7.852378812959227e-07,
2744
+ "loss": 0.3605,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.88,
2749
+ "learning_rate": 7.612046748871327e-07,
2750
+ "loss": 0.2973,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.88,
2755
+ "learning_rate": 7.375304338969135e-07,
2756
+ "loss": 0.3464,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.88,
2761
+ "learning_rate": 7.142160781674645e-07,
2762
+ "loss": 0.2984,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.88,
2767
+ "learning_rate": 6.912625135579587e-07,
2768
+ "loss": 0.2863,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.89,
2773
+ "learning_rate": 6.68670631909335e-07,
2774
+ "loss": 0.2629,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.89,
2779
+ "learning_rate": 6.464413110096601e-07,
2780
+ "loss": 0.322,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.89,
2785
+ "learning_rate": 6.245754145600091e-07,
2786
+ "loss": 0.2915,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.89,
2791
+ "learning_rate": 6.030737921409169e-07,
2792
+ "loss": 0.3556,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.89,
2797
+ "learning_rate": 5.819372791793654e-07,
2798
+ "loss": 0.2811,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.9,
2803
+ "learning_rate": 5.611666969163243e-07,
2804
+ "loss": 0.3172,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.9,
2809
+ "learning_rate": 5.407628523748398e-07,
2810
+ "loss": 0.2509,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.9,
2815
+ "learning_rate": 5.207265383286831e-07,
2816
+ "loss": 0.3164,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.9,
2821
+ "learning_rate": 5.010585332715401e-07,
2822
+ "loss": 0.3269,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.9,
2827
+ "learning_rate": 4.817596013867765e-07,
2828
+ "loss": 0.2737,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.91,
2833
+ "learning_rate": 4.628304925177318e-07,
2834
+ "loss": 0.2989,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.91,
2839
+ "learning_rate": 4.4427194213859216e-07,
2840
+ "loss": 0.2985,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.91,
2845
+ "learning_rate": 4.2608467132581934e-07,
2846
+ "loss": 0.2354,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.91,
2851
+ "learning_rate": 4.082693867301224e-07,
2852
+ "loss": 0.2953,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.91,
2857
+ "learning_rate": 3.908267805490051e-07,
2858
+ "loss": 0.3005,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.92,
2863
+ "learning_rate": 3.7375753049987974e-07,
2864
+ "loss": 0.3116,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.92,
2869
+ "learning_rate": 3.570622997937234e-07,
2870
+ "loss": 0.3119,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.92,
2875
+ "learning_rate": 3.4074173710931804e-07,
2876
+ "loss": 0.3156,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.92,
2881
+ "learning_rate": 3.247964765680389e-07,
2882
+ "loss": 0.297,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.92,
2887
+ "learning_rate": 3.0922713770922155e-07,
2888
+ "loss": 0.2563,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.93,
2893
+ "learning_rate": 2.940343254660905e-07,
2894
+ "loss": 0.2928,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.93,
2899
+ "learning_rate": 2.7921863014225504e-07,
2900
+ "loss": 0.282,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.93,
2905
+ "learning_rate": 2.6478062738876654e-07,
2906
+ "loss": 0.2774,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.93,
2911
+ "learning_rate": 2.507208781817638e-07,
2912
+ "loss": 0.3289,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.93,
2917
+ "learning_rate": 2.370399288006664e-07,
2918
+ "loss": 0.2862,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.93,
2923
+ "learning_rate": 2.2373831080695463e-07,
2924
+ "loss": 0.2452,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.94,
2929
+ "learning_rate": 2.1081654102351634e-07,
2930
+ "loss": 0.2631,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.94,
2935
+ "learning_rate": 1.9827512151456175e-07,
2936
+ "loss": 0.2316,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.94,
2941
+ "learning_rate": 1.8611453956612346e-07,
2942
+ "loss": 0.302,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.94,
2947
+ "learning_rate": 1.7433526766711727e-07,
2948
+ "loss": 0.2666,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.94,
2953
+ "learning_rate": 1.629377634909868e-07,
2954
+ "loss": 0.2707,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.95,
2959
+ "learning_rate": 1.519224698779198e-07,
2960
+ "loss": 0.3028,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.95,
2965
+ "learning_rate": 1.4128981481764115e-07,
2966
+ "loss": 0.2957,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.95,
2971
+ "learning_rate": 1.3104021143278911e-07,
2972
+ "loss": 0.2482,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.95,
2977
+ "learning_rate": 1.2117405796285286e-07,
2978
+ "loss": 0.2428,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.95,
2983
+ "learning_rate": 1.1169173774871478e-07,
2984
+ "loss": 0.2928,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.96,
2989
+ "learning_rate": 1.0259361921774014e-07,
2990
+ "loss": 0.3246,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.96,
2995
+ "learning_rate": 9.388005586947191e-08,
2996
+ "loss": 0.3169,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.96,
3001
+ "learning_rate": 8.555138626189619e-08,
3002
+ "loss": 0.2443,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.96,
3007
+ "learning_rate": 7.760793399827937e-08,
3008
+ "loss": 0.2289,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.96,
3013
+ "learning_rate": 7.00500077146038e-08,
3014
+ "loss": 0.3218,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.97,
3019
+ "learning_rate": 6.287790106757396e-08,
3020
+ "loss": 0.2334,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.97,
3025
+ "learning_rate": 5.609189272320237e-08,
3026
+ "loss": 0.2643,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.97,
3031
+ "learning_rate": 4.9692246345985905e-08,
3032
+ "loss": 0.25,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.97,
3037
+ "learning_rate": 4.367921058866187e-08,
3038
+ "loss": 0.279,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.97,
3043
+ "learning_rate": 3.805301908254455e-08,
3044
+ "loss": 0.3023,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.97,
3049
+ "learning_rate": 3.281389042844918e-08,
3050
+ "loss": 0.2862,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.98,
3055
+ "learning_rate": 2.796202818819871e-08,
3056
+ "loss": 0.2905,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.98,
3061
+ "learning_rate": 2.349762087671126e-08,
3062
+ "loss": 0.2741,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.98,
3067
+ "learning_rate": 1.9420841954681525e-08,
3068
+ "loss": 0.2657,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.98,
3073
+ "learning_rate": 1.5731849821833955e-08,
3074
+ "loss": 0.2763,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.98,
3079
+ "learning_rate": 1.2430787810776556e-08,
3080
+ "loss": 0.3208,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.99,
3085
+ "learning_rate": 9.517784181422018e-09,
3086
+ "loss": 0.246,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.99,
3091
+ "learning_rate": 6.992952116013918e-09,
3092
+ "loss": 0.3307,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.99,
3097
+ "learning_rate": 4.856389714723575e-09,
3098
+ "loss": 0.3072,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.99,
3103
+ "learning_rate": 3.1081799918375454e-09,
3104
+ "loss": 0.311,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.99,
3109
+ "learning_rate": 1.7483908725357546e-09,
3110
+ "loss": 0.3303,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 1.0,
3115
+ "learning_rate": 7.770751902513862e-10,
3116
+ "loss": 0.2496,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 1.0,
3121
+ "learning_rate": 1.9427068461808086e-10,
3122
+ "loss": 0.2792,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 1.0,
3127
+ "learning_rate": 0.0,
3128
+ "loss": 0.2959,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 1.0,
3133
+ "step": 520,
3134
+ "total_flos": 2.5944498742126182e+17,
3135
+ "train_loss": 0.3417217805981636,
3136
+ "train_runtime": 2008.3483,
3137
+ "train_samples_per_second": 33.136,
3138
+ "train_steps_per_second": 0.259
3139
+ }
3140
+ ],
3141
+ "logging_steps": 1.0,
3142
+ "max_steps": 520,
3143
+ "num_input_tokens_seen": 0,
3144
+ "num_train_epochs": 1,
3145
+ "save_steps": 500,
3146
+ "total_flos": 2.5944498742126182e+17,
3147
+ "train_batch_size": 16,
3148
+ "trial_name": null,
3149
+ "trial_params": null
3150
+ }